Unsupervised Learning of Discriminative Relative Visual Attributes

Shugao Ma, Stan Sclaroff, Nazli Ikizler-Cinbis*

Department of Computer Science, Boston University

*Department of Computer Engineering, Hacettepe University

Overview

- Motivation
- Formulation
- Algorithm
- Experiments
- Conclusion and future work

Attributes: Binary vs. Relative

Attribute "furry"

Binary:

yes

no

Relative:

>

It seems more natural to use the relative attribute for "furry"

Attributes: Category Level vs. Instance Level

- Category level: Bears are furrier than giraffes
- Instance level: **This** bear is furrier than **that** bear
- At category level, some attributes are not "relevant" to certain classes

Example: Attribute "open" in "Outdoor Scenes Recognition" dataset

Inside City

Mountain

In this work, we learn relative attributes at the category level

Learning Attributes: Supervised vs. Unsupervised

- Supervised Learning
 - Attributes are defined and annotated on training data
 - Problems:

Attribute intuitive but not useful

Useful attributes may be overlooked

Annotations may be erroneous

Annotation is labor-intensive, not scalable

Unsupervised learning methods can help discover useful attributes

Unsupervised Learning of Relative Attributes

Large search space

- For N classes, possible orderings are N!
- Orderings in subsets of classes should also be considered

Our contribution

- A formulation for unsupervised relative attribute learning
- Efficient heuristic algorithm for learning
- Learned attributes are discriminative, can be used with unseen classes,
 and correlate well with human labeled relative attributes

• Given set of images $I = \{i\}$ represented by feature vectors $\{x_i\}$ and class labels $\{c_a\}$ we learn rank function for attribute m:

$$r_m(\boldsymbol{x}_i^a) = \boldsymbol{w}_m^T \boldsymbol{x}_i^a, \quad s.t. \quad \boldsymbol{w}_m^T \boldsymbol{x}_i^a > \boldsymbol{w}_m^T \boldsymbol{x}_j^b, \quad i \in c_a, j \in c_b, c_a \succ c_b$$

Supervised learning formulation [Parikh&Grauman, ICCV 2011]:

$$\min_{\boldsymbol{w}_{m},\boldsymbol{\xi},\boldsymbol{\gamma}} \frac{1}{2} ||\boldsymbol{w}_{m}^{T}||_{2}^{2} + C(\sum \xi_{ij,ab}^{2} + \sum \gamma_{ij,ab}^{2})$$

$$s.t. \quad \boldsymbol{w}_{m}^{T}(\boldsymbol{x}_{i}^{a} - \boldsymbol{x}_{j}^{b}) \geq 1 - \xi_{ij,ab}; \ \forall (i,j), i \in c_{a}, j \in c_{b}, c_{a} \succ c_{b}$$

$$|\boldsymbol{w}_{m}^{T}(\boldsymbol{x}_{i}^{a} - \boldsymbol{x}_{j}^{b})| \leq \gamma_{ij,ab}; \ \forall (i,j), i \in c_{a}, j \in c_{b}, c_{a} \approx c_{b}$$

$$\xi_{ij,ab} \geq 0; \gamma_{ij,ab} \geq 0$$

• Given set of images $I = \{i\}$ represented by feature vectors $\{x_i\}$ and class labels $\{c_a\}$ we learn rank function for attribute m:

$$r_m(\boldsymbol{x}_i^a) = \boldsymbol{w}_m^T \boldsymbol{x}_i^a, \quad s.t. \quad \boldsymbol{w}_m^T \boldsymbol{x}_i^a > \boldsymbol{w}_m^T \boldsymbol{x}_j^b, \quad i \in c_a, j \in c_b, c_a \succ c_b$$

Unsupervised learning formulation:

$$\min_{\boldsymbol{w}_{m},\boldsymbol{\xi},\boldsymbol{\delta},\boldsymbol{\mu}} \quad \frac{1}{2}||\boldsymbol{w}_{m}^{T}||_{2}^{2} + C_{1} \sum \xi_{ij,ab}^{2} + C_{2}(1 - \frac{1}{N} \sum \mu_{a})$$
s.t. $\delta_{ab}\boldsymbol{w}_{m}^{T}(\boldsymbol{x}_{i}^{a} - \boldsymbol{x}_{j}^{b}) \geq \min(\mu_{a}, \mu_{b}) - \xi_{ij,ab},$

$$\forall (i,j), i \in c_{a}, j \in c_{b}, a > b$$

$$|\delta_{ab} - \delta_{bc}| \geq |\delta_{ab} - \delta_{ac}|, \quad \forall a > b > c, \mu_{a} = \mu_{b} = \mu_{c} = 1$$

$$|\delta_{ab}| = \mu_{a}, \quad \forall a \in \{2, \dots, N\}$$

$$|\delta_{ab}| = \mu_{b}, \quad \forall b \in \{1, 2, \dots, N - 1\}$$

$$\xi_{ij,ab} \geq 0, \ \delta_{ab} \in \{-1, 0, 1\}, \ \mu_{a} \in \{0, 1\}.$$

• Given set of images $I = \{i\}$ represented by feature vectors $\{x_i\}$ and class labels $\{c_a\}$ we learn rank function for attribute m:

$$r_m(\boldsymbol{x}_i^a) = \boldsymbol{w}_m^T \boldsymbol{x}_i^a, \quad s.t. \quad \boldsymbol{w}_m^T \boldsymbol{x}_i^a > \boldsymbol{w}_m^T \boldsymbol{x}_j^b, \quad i \in c_a, j \in c_b, c_a \succ c_b$$

Unsupervised learning formulation:

$$\min_{\boldsymbol{w}_{m}, \boldsymbol{\xi}, \boldsymbol{\delta}, \boldsymbol{\mu}} \quad \frac{1}{2} || \boldsymbol{w}_{m}^{T} ||_{2}^{2} + C_{1} \sum \xi_{ij,ab}^{2} + C_{2} (1 - \frac{1}{N} \sum \mu_{a})$$

$$s.t. \quad \delta_{ab} \boldsymbol{w}_{m}^{T} (\boldsymbol{x}_{i}^{a} - \boldsymbol{x}_{j}^{b}) \geq \min(\mu_{a}, \mu_{b}) - \xi_{ij,ab},$$

$$\forall (i, j), i \in c_{a}, j \in c_{b}, a > b$$

$$|\delta_{ab} - \delta_{bc}| \geq |\delta_{ab} - \delta_{ac}|, \quad \forall a > b > c, \mu_{a} = \mu_{b} = \mu_{c} = 1$$

$$|\delta_{ab}| = \mu_{a}, \quad \forall a \in \{2, \dots, N\}$$

$$|\delta_{ab}| = \mu_{b}, \quad \forall b \in \{1, 2, \dots, N - 1\}$$

$$\xi_{ij,ab} > 0, \quad \delta_{ab} \in \{-1, 0, 1\}, \quad \mu_{a} \in \{0, 1\}.$$

Decision variable
$$\delta_{ab}$$
 encodes class ordering:
$$\delta_{ab} = \begin{cases} 1 & c_a \succ c_b \\ -1 & c_a \prec c_b \\ 0 & \mu_a = 0 \lor \mu_b = 0 \end{cases}$$

Decision variable $\mu_a \in \{0,1\}$ represents whether attribute m is relevant to class c_a

• Given set of images $I = \{i\}$ represented by feature vectors $\{x_i\}$ and class labels $\{c_a\}$ we learn rank function for attribute m:

$$r_m(\boldsymbol{x}_i^a) = \boldsymbol{w}_m^T \boldsymbol{x}_i^a, \quad s.t. \quad \boldsymbol{w}_m^T \boldsymbol{x}_i^a > \boldsymbol{w}_m^T \boldsymbol{x}_j^b, \quad i \in c_a, j \in c_b, c_a \succ c_b$$

Unsupervised learning formulation:

$$\min_{\boldsymbol{w}_{m},\boldsymbol{\xi},\boldsymbol{\delta},\boldsymbol{\mu}} \quad \frac{1}{2}||\boldsymbol{w}_{m}^{T}||_{2}^{2} + C_{1} \sum \xi_{ij,ab}^{2} + C_{2}(1 - \frac{1}{N} \sum \mu_{a}) \\
s.t. \quad \delta_{ab}\boldsymbol{w}_{m}^{T}(\boldsymbol{x}_{i}^{a} - \boldsymbol{x}_{j}^{b}) \geq \min(\mu_{a}, \mu_{b}) - \xi_{ij,ab}, \\
\forall (i,j), i \in c_{a}, j \in c_{b}, a > b \\
|\delta_{ab} - \delta_{bc}| \geq |\delta_{ab} - \delta_{ac}|, \quad \forall a > b > c, \mu_{a} = \mu_{b} = \mu_{c} = 1 \\
|\delta_{ab}| = \mu_{a}, \quad \forall a \in \{2, \dots, N\} \\
|\delta_{ab}| = \mu_{b}, \quad \forall b \in \{1, 2, \dots, N - 1\} \\
\xi_{ij,ab} \geq 0, \quad \delta_{ab} \in \{-1, 0, 1\}, \quad \mu_{a} \in \{0, 1\}.$$

Favor those attributes that are relevant to more training classes.

• Given set of images $I = \{i\}$ represented by feature vectors $\{x_i\}$ and class labels $\{c_a\}$ we learn rank function for attribute m:

$$r_m(\boldsymbol{x}_i^a) = \boldsymbol{w}_m^T \boldsymbol{x}_i^a, \quad s.t. \quad \boldsymbol{w}_m^T \boldsymbol{x}_i^a > \boldsymbol{w}_m^T \boldsymbol{x}_j^b, \quad i \in c_a, j \in c_b, c_a \succ c_b$$

Unsupervised learning formulation:

$$\min_{\boldsymbol{w}_{m},\boldsymbol{\xi},\boldsymbol{\delta},\boldsymbol{\mu}} \quad \frac{1}{2}||\boldsymbol{w}_{m}^{T}||_{2}^{2} + C_{1} \sum \xi_{ij,ab}^{2} + C_{2}(1 - \frac{1}{N} \sum \mu_{a})$$

$$s.t. \quad \delta_{ab}\boldsymbol{w}_{m}^{T}(\boldsymbol{x}_{i}^{a} - \boldsymbol{x}_{j}^{b}) \geq \min(\mu_{a}, \mu_{b}) - \xi_{ij,ab},$$

$$\forall (i,j), i \in c_{a}, j \in c_{b}, a > b$$

$$|\delta_{ab} - \delta_{bc}| \geq |\delta_{ab} - \delta_{ac}|, \quad \forall a > b > c, \mu_{a} = \mu_{b} = \mu_{c} = 1$$

$$|\delta_{ab}| = \mu_{a}, \quad \forall a \in \{2, \dots, N\}$$

$$|\delta_{ab}| = \mu_{b}, \quad \forall b \in \{1, 2, \dots, N - 1\}$$

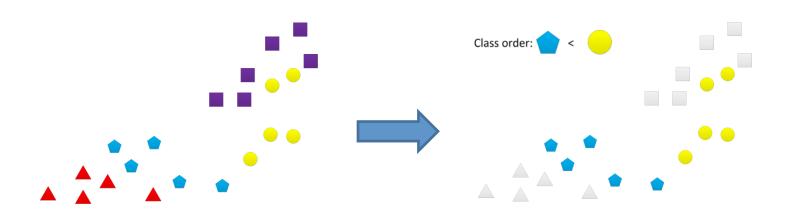
$$\xi_{ij,ab} \geq 0, \quad \delta_{ab} \in \{-1, 0, 1\}, \quad \mu_{a} \in \{0, 1\}.$$

Enforce strict ordering among classes and make sure order is not contradictory.

Basic idea: Alternate between learning w_m and δ , μ

Initialization: Pick pair of classes c_a and c_b , let $c_a > c_b$, and

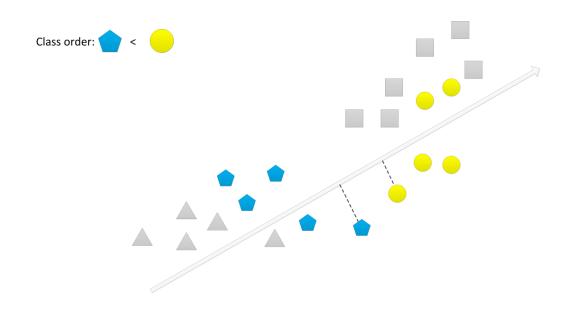
$$\mu_k = \begin{cases} 1 & k = a \lor k = b \\ 0 & otherwise \end{cases} \qquad \delta_{kh} = \begin{cases} 1 & k = a \land h = b \\ 0 & otherwise \end{cases}$$



Make as few assumptions about the class ordering as possible; for each pair of classes, we run the algorithm once so that the training data are effectively explored while the search space is not huge: $O(n^2)$.

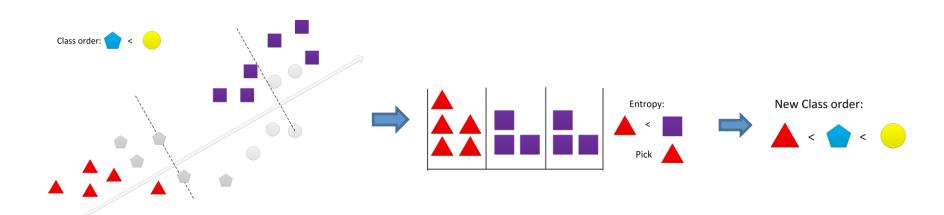
Updating w_m :

When δ and μ are fixed, w_m can be learned via SVM solver.



Updating $\boldsymbol{\delta}$ and $\boldsymbol{\mu}$:

- With w_m fixed the update of δ and μ is a mixed integer programming problem, so we use a heuristic method.
- Idea: greedily pick a class that introduces small additional loss if labeled as relevant at this iteration.



Updating $oldsymbol{\delta}$ and $oldsymbol{\mu}$ (continued):

– After selecting a class c_d to add to the list of relevant classes, update δ and μ :

$$\mu_k^t = \begin{cases} \mu_k^{t-1}, & k \neq d \\ 1, & k = d \end{cases} \qquad \delta_{kh}^t = \begin{cases} \delta_{kh}^{t-1}, & k \neq d \land h \neq d \\ 1, & (k = d \land m_d^t > m_h^t) \lor (h = d \land m_k^t > m_d^t) \\ -1, & (k = d \land m_d^t < m_h^t) \lor (h = d \land m_k^t < m_d^t) \\ 0, & (k = d \land \mu_h^t = 0) \lor (h = d \land \mu_k^t = 0) \end{cases}$$

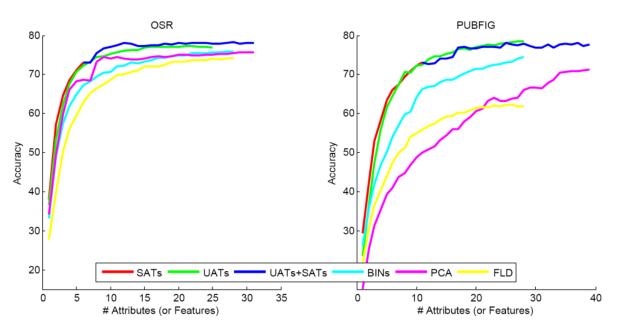
Where m_k^t = median attribute value of class k at the current iteration.

– Repeat the two updating steps, until the objective value stops decreasing or $\mu_a = 1$ for all classes.

Experiments

- Datasets: provided by [Parikh & Grauman, ICCV 2011]
 - Outdoor Scene Recognition (OSR): 2688 images, 8 categories, 512-D
 gist as features
 - Subset of the Public Figure Face Database (PUBFIG): 772 images, 8
 identities, 512-D gist + 45-D lab color histogram as features
- Three experiments:
 - Multi-class classification
 - K-Shot classification
 - Correlation analysis between automatically learned class orderings and human labeled class orderings

Multiclass Classification



SATs: relative attributes learned by [Parikh&Grauman] UATs: relative attributes learned by our method UATs+SATs: all SATs with UATs added one by one

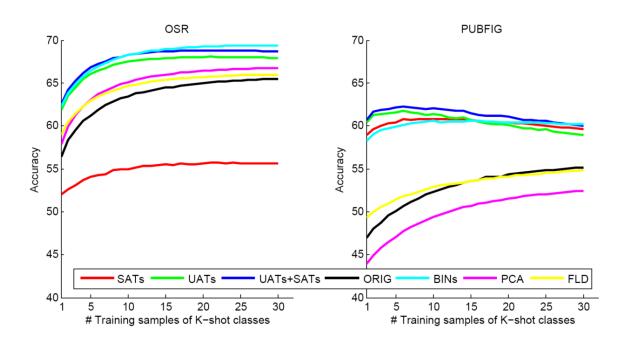
BINs: linear SVM learned between pair of classes

PCA: principal components

FLD: Fisher's Linear Discriminant between pair of classes

- Multi-class SVM with RBF kernel are learned using attributes (or features)
- For same number of attributes, UATs perform similar to SATs.
- However, UATs outnumber SATs, and capture some discriminative attributes that may be overlooked by humans when labeling relative attributes.

K-Shot Classification



- 2 classes are left out when training attributes
- 1-NN classifiers' accuracy is plotted as a function of number of images of the left out classes in the database.
- Attributes learned by the unsupervised algorithm have good generalizability and they can complement the attributes learned via the supervised algorithm.

Correlation Analysis

- Compute Kendal Tau correlation $\tau = \frac{2(n_c n_d)}{n(n-1)}$ where n_c and n_d are concordant and discordant pairs between two orderings.
- Considering anti-correlation, we use $\hat{\tau} = |\tau|$
- For all human labeled relative attributes, there are highly correlated automatically learned relative attributes.

OSR			
Attr. Name	Sem. Attr.	Auto. Learned Attr.	$\hat{ au}$
natural	$T \prec I \sim S \prec H \prec C \sim O \sim M \sim F$	$S \prec I \prec H \prec F \prec O$	0.89
open	$T\sim F \prec I\sim S \prec M \prec H\sim C\sim O$	$T \prec F \prec S \prec O \prec C \prec H$	0.86
perspective	$O \prec C \prec M \sim F \prec H \prec I \prec S \prec T$	$O \prec F \prec H \prec I \prec S$	1
large-objects	$F \prec O \sim M \prec I \sim S \prec H \sim C \prec T$	$F \prec M \prec S \prec H \prec C \prec T$	0.97
diagonal-plane	$F \prec O \sim M \prec C \prec I \sim S \prec H \prec T$	$F \prec O \prec M \prec I \prec H \prec S$	0.79
close-depth	$C \prec M \prec O \prec T \sim I \sim S \sim H \sim F$	M≺O≺F≺I≺S	0.84
PUBFIG			
Attr. Name	Sem. Attr.	Auto. Learned Attr.	$\hat{ au}$
Masculine-looking	$S \prec M \prec Z \prec V \prec J \prec A \prec H \prec C$	$S \prec M \prec Z \prec A \prec H \prec C$	1
White	$A \prec C \prec H \prec Z \prec J \prec S \prec M \prec V$	$A \prec Z \prec H \prec J \prec S$	0.80
Young	$V \prec H \prec C \prec J \prec A \prec S \prec Z \prec M$	$V \prec H \prec C \prec J \prec A \prec M$	1
Smiling	$J \prec V \prec H \prec A \sim C \prec S \sim Z \prec M$	$J \prec H \prec C \prec A \prec Z$	0.95
Chubby	$V \prec J \prec H \prec C \prec Z \prec M \prec S \prec A$	$J \prec H \prec C \prec Z \prec A \prec M$	0.87
Visible-forehead	$J \prec Z \prec M \prec S \prec A \sim C \sim H \sim V$	$J \prec Z \prec M \prec C \prec A \prec H$	0.89
Bushy-eyebrows	$M \prec S \prec Z \prec V \prec H \prec A \prec C \prec J$	$S \prec M \prec Z \prec A \prec H \prec C$	0.73
Narrow-eyes	$M \prec J \prec S \prec A \prec H \prec C \prec V \prec Z$	$M \prec A \prec J \prec H \prec C$	0.80
Pointy-nose	$A \prec C \prec J \sim M \sim V \prec S \prec Z \prec H$	$A \prec M \prec V \prec J \prec H$	0.84
Big-lips	$H \prec J \prec V \prec Z \prec C \prec M \prec A \prec S$	$H \prec J \prec V \prec M \prec A$	1
Round-face	$H \prec V \prec J \prec C \prec Z \prec A \prec S \prec M$	$V \prec J \prec Z \prec A \prec S$	1

OSR classes include: coast (C), forest (F), highway (H), inside-city (I), mountain (M), open-country (O), street (S) and tall-building (T)

PUBFIG classes include: Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H), Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z)

Conclusion and Future Work

- Our method automatically discovers useful relative attributes that correlate well with human labeled relative attributes.
- The formulation also considers an attribute's relevance to each training class.
- An interesting direction for future work is learning relative attributes at the instance level.