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Abstract

We propose Hierarchical Space-Time Segments as a new
representation for action recognition and localization. This
representation has a two level hierarchy. The first level com-
prises the root space-time segments that may contain a hu-
man body. The second level comprises multi-grained space-
time segments that contain parts of the root. We present an
unsupervised method to generate this representation from
video, which extracts both static and non-static relevant
space-time segments, and also preserves their hierarchical
and temporal relationships. Using simple linear SVM on the
resultant bag of hierarchical space-time segments represen-
tation, we attain better than, or comparable to, state-of-art
action recognition performance on two challenging bench-
mark datasets and at the same time produce good action
localization results.

1. Introduction
Human action recognition is an important topic of inter-

est, due to its wide ranging application in automatic video
analysis, video retrieval and more. Many local space-time
representations have been proposed for use in the action
recognition task. Among them, space-time interest points
(STIPs) [13] and dense trajectories [22] are perhaps the
most widely used. One major issue for both STIPs and
dense trajectories is that they focus on non-static parts of
the video, while the static parts are largely discarded. We
argue that both non-static and relevant static parts in the
video are important for action recognition and localization.
There are at least two reasons:

• Some static parts of the space-time video volume can
be helpful in recognizing human actions. For example,
for the golf swing action, instead of just relying on the
regions that cover the hands and arms, which have sig-
nificant motion, the overall body pose can also indicate
important information that may be exploited to better
discriminate this action from others.

• In many applications, estimating the location of the

Figure 1. Extracted segments from example video frames of the
UCF Sports dataset. Yellow boxes outline the segments. Boxes
within a box indicate child-parent relationships.

action performer is also desired in addition to recog-
nizing the action. Extracting only the non-static body
parts may not lead to accurate localization of the whole
body. Therefore, accounting for both static and non-
static parts may help.

In this paper, we propose a representation that we call hi-
erarchical space-time segments for both action recognition
and localization. In this representation, the space-time seg-
ments of videos are organized in a two-level hierarchy. The
first level comprises the root space-time segments that may
contain the whole human body. The second level comprises
space-time segments that contain parts of the root.

We present an algorithm to extract hierarchical space-
time segments from videos. This algorithm is unsupervised,
such that it does not need any pre-trained body or body part
detectors that may be constrained by strong priors of com-
mon poses present in the related training set. Fig. 1 shows
some example video frames and extracted hierarchical seg-
ments in the UCF-Sports video dataset [19] and more ex-
amples are shown in Fig. 5. The representation of parts is
multi-grained in that the parts are allowed to overlap: some
parts are actually parts of larger parts, e.g. lower leg and
whole leg. These segments are then tracked in time to pro-
duce space-time segments as shown in Fig. 2.

Our algorithm comprises three major steps. We first ap-
ply hierarchical segmentation on each video frame to get
a set of segment trees, each of which is considered as a
candidate segment tree of the human body. In the second
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Figure 2. Hierarchical space-time segments extracted from a div-
ing action in the UCF Sports dataset. Each blue box shows a space-
time segment. Red boxes show a segment tree on a frame, and the
space-time segments are produced by tracking these segments.

step, we prune the candidates by exploring several cues such
as shape, motion, articulated objects’ structure and global
foreground color. Finally, we track each segment of the
remaining segment trees in time both forward and back-
ward. This process yields the final hierarchical space-time
segments. These space-time segments are subsequently
grouped into tracks according to their space-time overlap.

We then utilize these space-time segments in comput-
ing a bag-of-words representation. Bag-of-words represen-
tations have shown promising results for action recognition
[13, 22]. Those representations, however, mostly lack the
spatial and temporal relationships between regions of inter-
est, whereas there are attempts to include these relationships
later via higher order statistics [24, 11, 7, 18, 6]. Our hi-
erarchical segmentation-based representation preserves hi-
erarchical relationships naturally during extraction and, by
following the temporal continuity of these space-time seg-
ments, the temporal relationships are also preserved. We
show in experiments that by using both parts and root space-
time segments together, better recognition is achieved.
Leveraging temporal relationships among root space-time
segments, we can also localize the whole track of the action
by identifying a sparse set of space-time segments.

To summarize, the main contributions of this paper are:
1. A new hierarchical space-time segments representa-

tion designed for both action recognition and localiza-
tion that incorporates multi-grained representation of
the parts and the whole body in a hierarchical way.

2. An algorithm to extract the proposed hierarchical
space-time segments that preserves both static and
non-static relevant space time segments as well as their
hierarchical and temporal relationships. Such relation-
ships serve for better recognition and localization.

We evaluated the proposed formulation on challenging
benchmark datasets UCF-Sports: [19] and HighFive [17].
These datasets are representative of two major categories
of realistic actions, namely sports and daily interactions.
Using just a simple linear SVM on the bag of hiearchi-
cal space-time segments representation, better or compa-
rable to state-of-the-art action recognition performance is
achieved without using human bounding box annotations.
At the same time, as the results demonstrate, our proposed
representation produces good action localization results.

2. Related Work
In recent years, action recognition methods that use bag

of space-time interest points [13] or dense trajectories [22]
have performed well on many benchmark datasets. How-
ever, one issue is that the space-time relationships among
the STIP or dense trajectories are not explicitly extracted.
Many attempts have been made to explore such relation-
ships for action recognition, which usually resort to higher
order statistics of the already extracted STIPs or dense tra-
jectories, such as pairs [24, 11], groups [7], point clouds
[3], or clusters [18, 6]. In contrast, the extraction of both
space-time segments and their hierarchical and temporal re-
lationships are integrated in our approach.

Action localization is usually done in the action detec-
tion setting [20, 21] and relatively few works do both action
recognition and localization. Action recognition methods
that use holistic representations of the human figure may
have the potential to localize the action performer, such
as motion history images [2], space-time shape models [8]
and human silhouettes [23]. But these approaches may not
be robust enough to handle occlusions and cluttered back-
grounds in realistic videos. Works that use pre-trained hu-
man body or body part detectors also can localize the per-
former, such as [10, 25, 26]. However, their detectors may
be constrained by the human body appearance priors im-
plicitly contained in the training set and may not be flexible
enough to deal with varying occlusions and poses in vari-
ous actions. In [12] the bag of STIP approach was extended
beyond action recognition to localization using latent SVM.
In this paper, we show that by using hierarchical space-time
segments we can do action localization within the bag-of-
words framework. We show much better localization per-
formance than [12] in experiments (Table 3).

Our work is also related to recent works in video seg-
mentation. Recent works on hierarchical video segmenta-
tion include [9, 5]. The method in [4] applies a general
video segmentation method to produce video sub-volumes
for action recognition. However, for action recognition and
localization, general video segmentation methods may pro-
duce much more irrelevant space-time segments than our
method that explores human action related cues to effec-
tively prune irrelevant ones. Some work proposed object
centric video segmentation [14, 16], but these methods do
not extract space-time segments of parts.

3. Hierarchical Space-Time Segments
In this section, we describe the major steps of our algo-

rithm for extracting hierarchical space-time segments.

3.1. Video Frame Hierarchical Segmentation
For human action recognition, segments in a video frame

that contain motion are useful as they may belong to moving
body parts. However, some static segments may belong to



Figure 3. The pipeline for hierarchical video frame segments extraction.

the static body parts, and thus may be useful for the pose in-
formation they contain. Moreover, for localizing the action
performer, both static and non-static segments of the human
body are needed. Based on this observation, we design our
video frame segmentation method to preserve segments of
the whole body and the parts while suppressing the back-
ground. The idea is to use both color and motion informa-
tion to reduce boundaries within the background and rigid
objects and strengthen internal motion boundaries of human
body resulting from different motions of body parts. Then,
a subsequent hierarchical segmentation may further reduce
irrelevant segments of background and rigid objects while
retaining dense multi-grained segments on the human body.

In practice, on each video frame, we compute the bound-
ary map by the method in [15] using three color channels
and five motion channels including optical flow, unit nor-
malized optical flow and the optical flow magnitude. The
boundary map is then used to compute an Ultrametic Con-
tour Map (UCM) by the method in [1].

The UCM represents a hierarchical segmentation of a
video frame [1], in which the root is the whole video frame.
We traverse this segment tree to remove redundant segments
as well as segments that are too large or too small and un-
likely to be a human body or body parts. Specifically, at
each segment, if its size is larger than 2

3 of its parent size,
or is larger or smaller than some thresholds (parameters of
the system), the parent of its children segments is set to its
parent segment and it is then removed.

We then remove the root of the segment tree and get a set
of segment trees T t (t is index of the frame). Each T tj ∈ T t
is considered as a candidate segment tree of a human body
and we denote T tj = {stij} where each stij is a segment and
st0j is the root segment. Two example candidate segment
trees, which remained after the subsequent pruning process,
are shown in the rightmost images in Fig. 3.

3.2. Pruning Candidate Segment Trees
We want to extract both static and non-static relevant

segments, so the pruning should preserve segments that are

static but relevant. We achieve this by exploring the hierar-
chical relationships among the segments so that the decision
to prune a segment is not made using only the local infor-
mation contained in the segment itself, but the information
of all segments of the same candidate segment tree. This is
in contrast with STIPs or dense trajectories in which each
local space-time representation is extracted independently.

Specifically, all subsequent pruning is performed at the
candidate level, i.e. a candidate segment tree is either re-
moved altogether or kept with all its segments. In this way,
we may extract the whole human body even if only a small
body part has motion. Example cases can be seen in the
output segment trees in Fig. 1 and Fig. 5. Especially in the
golf action, there are only slight motions at the hands of the
human bodies, but we can still correctly extract the whole
human body and the static body parts.

We explore multiple action related cues to prune the can-
didate segment trees, described in the order of our pipeline
(Fig. 3) as follows:

Tree pruning with shape and color cues. The segment
trees are first pruned using the shape and motion cues.

• Shape cue: Background objects (e.g. buildings) with
straight boundaries are common in manmade scenes,
but human body boundaries contain fewer points of
zero curvature. With this observation, for each candi-
date T tj ∈ T t, we compute the curvature at all bound-
ary points of its root segment st0j . If the ratio of points
that have approximately zero curvature is large (> 0.6
in our system), we remove T tj . The curvature κa at a
boundary point (xa, ya) is computed as follows:

κa =

∣∣∣∣xa − xa+δya − ya+δ
− xa−δ − xa
ya−δ − ya

∣∣∣∣ (1)

where (xa−δ, ya−δ) and (xa+δ, ya+δ) are two nearby
points of (xa, ya) on the segment boundary.

• Motion cue: For each segment stij ∈ T tj , we compute
the average motion magnitude of all pixels within stij .
To compute the actual motion magnitude, we compute



an affine transformation matrix between the current
frame and the consecutive frame to approximate cam-
era motion and calibrate the flow fields accordingly.
If at least one segment has average motion magnitude
higher than some threshold, T tj will be kept, otherwise
it will be pruned. The threshold is estimated based on
the motion magnitudes of pixels that are not contained
in any of T tj ∈ T t since these pixels are likely to be-
long to the background.

Tree pruning using foreground map We explore two gen-
eral assumptions to estimate foreground maps for further
pruning of the candidates. First, as an articulated object, the
region of a non-static human body usually contains many
internal motion boundaries resulting from different motions
of body parts. Thus, the segment tree of the human body
usually has a deeper structure with more nodes compared to
that of the rigid objects. We account for this as a structure
cue. Second, segments of the foreground human body are
more consistently present than segments caused by artificial
edges and erroneous segmentation, and we account for this
as a global color cue over the whole video sequence. The
foreground maps are then constructed as follows:

Denote T̃ t as the set of remaining candidate trees after
pruning with shape and motion cues, and let S represent
the set of all remaining segments on all frames, i.e. S =
{stij |∀ stij ∈ T tj , ∀ T tj ∈ T̃ t, ∀ t}. To avoid cluttered
notation, in the following we simply denote S = {sk}. We
compute the L∞ normalized color histogram ck for every
sk ∈ S (128 bins in our system). Then the foreground color
histogram c is voted by all segments:

c =
∑
sk∈S

2hk · ck (2)

where hk is the height of segment sk in its segment tree. For
root segment st0j we define its height ht0j to be 1 and for a
non-root segment stij its height htij is set to the number of
edges on the path from the root to it plus one. The color
histogram c is then L1 normalized. As we can see from
Eq. 2, colors of more frequently appearing segments and
segments with greater heights will receive more votes.

Let F t denote the foreground map of frame t. Its value
at ith pixel is set as F ti = c(cti), where cti is the color of ith
pixel of frame t. For each segment stij in a candidate seg-
ment tree T tj ∈ T̃ t on frame t, we compute its foreground
probability as the average values covered by stij in F t. If
all segments of T tj have low foreground probability, T tj is
pruned, otherwise it will be kept. One can see in Fig. 3 that
by using the foreground map, we can effectively prune the
background segments in the example frames.

3.3. Extracting Hierarchical Space-Time Segments

After candidate segment tree pruning, we extract a set
T̂ t that contains remaining candidate segment trees. To
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Figure 4. Our non-regid region tracking method.

capture temporal dynamics of the human body or body
parts, for each T tj ∈ T̂ t we track every segment stij ∈ T tj
to construct a space-time segment.

In this work, we propose a novel method for non-rigid
region tracking (Fig. 4). Let R denote the tracked region
on the current frame. Let a = (xa, ya) denote the co-
ordinates of a point in R and let (∆xa, ∆ya) denote its
corresponding flow vector from median filtered optical flow
fields. The predicted region at the next frame by flow is then
R′ = {(x′a, y′a)} = {(xa+∆xa, ya+∆ya)}. LetB denote
the bounding box ofR′ whose edges are parallel to horizon-
tal and vertical axes and let B̂ represent the tight bounding
rectangle of R′ whose longer edge is parallel with R′’s axis
of least inertia. Let h represent the color histogram of the
original segment being tracked . We then compute a flow
prediction map Mf and color prediction map Mc over B.
Suppose a point b′ ∈ B on the next frame has color cb′ ,
then we set Mc(b

′) = h(cb′) and set Mf (b′) as:

Mf (b′) =


2 b′ ∈ R′

1 b′ ∈ B̂ ∧ b′ /∈ R′

0 otherwise

(3)

We combine the two maps, M(b′) = Mf (b′) ·Mc(b
′). In

practice, when we computeMf we use a grid over B̂ so that
points in the same cell will be set to the maximum value in
that cell. This is to reduce holes caused by noise in the
optical flow field.

The map M is scaled and quantized to contain integer
values in the range [0, 20]. By applying a set of thresh-
olds δm of integer values from 1 to 20, we get 20 binary
maps. The size of every connected component in these bi-
nary maps is computed and the one with most similar size
to R is selected as the candidate. Note that multiple thresh-
olds are necessary. This is because the color distribution of
the template may be either peaked, if the template has uni-
form color, or relatively flat, if the template contains many
colors. Thus the range of values in M(b′) may vary in dif-
ferent situations and a fixed threshold will not work well.
The number of thresholds is experimentally chosen for the
trade-off between performance and speed.

If the ratio of size between the selected candidate and
R being tracked is within a reasonable range (we use
[0.7, 1.3]), we set the candidate as the tracked region, oth-



erwise the target is considered as being lost. Since all the
computations are performed locally in B and implemented
as matrix operations utilizing efficient linear algebra soft-
ware packages, this tracking method is very fast. We track
each region at most 7 frames backward, where backward
optical flow is used, and 7 frames forward. In this respect,
our space-time segments have a relatively short extent, with
a maximum temporal length of 15.

Although segment tree T tj may have deep structures with
height larger than 3, these structures may not persistently
occur in other video frames due to the change in human
motion and the errors in segmentation. For robustness and
simplicity, we have only two levels in the resultant hierar-
chical structure of space-time segments: the root level is the
space-time segment by tracking the root segment st0j of T tj ,
and the part level are the space-time segments by tracking
non-root segments stij ,∀i 6= 0.

Since space-time segments are constructed using seg-
ment trees of every video frame, many of them may tem-
porally overlap and contain the same object, e.g. space-
time segments produced by tracking the segments that con-
tain the same human body but are from two consecutive
frames. This provides a temporally dense representation of
the video. We explore this dense representation to construct
longer tracks of objects despite the short temporal extent
of individual space-time segment. Specifically, two root
space-time segments that have significant spatial overlap on
any frame are grouped into the same track. The spatial over-
lap is measured by the ratio of the intersection over the area
of the smaller segment and we empirically set the overlap
threshold to be 0.7. The part space-time segments are sub-
sequently grouped into the same track as their roots. Note
that now we have temporal relationships among root space-
time segments of the same track.

For each track, we then compute bounding boxes on
all frame it spans. As described before, many root space-
time segments of a track may temporally overlap on some
frames. On each of those frames, every overlapping root
space-time segment will provide a candidate bounding box.
We choose the bounding box that has the largest average
foreground probability using the foreground map described
in section 3.2. As we assume the foreground human body is
relatively consistently present in the video, we further prune
irrelevant space-time segments by removing tracks of short
temporal extent. We set the temporal length threshold to be
one fourth of the video length but keep the longest track if
no track has length greater than the threshold.

4. Action Recognition and Localization
To better illustrate the effectiveness of hierarchical

space-time segments for action recognition and localization,
we use simple learning techniques to train action classifiers
and the learned models are then used for action localization.

For each space-time segment, we divide its axis paral-
lel bounding boxes using a space-time grid, compute fea-
tures within each space-time cell and concatenate the fea-
tures from all cells to make the final feature vector. Here
we want to mention that we do not limit the space-time seg-
ments to have the same length as the method in [22] did
for dense trajectories. This is to deal with the variations of
action speeds of different performers. We do not use space-
time segments that are too short (length < 6) as they may
not be discriminative enough. We also split long space-time
segments (length > 12) into two to produce shorter ones
while keeping the original one. This is to get a denser rep-
resentation of the action.

We build separate codebooks for root and part space-
time segments using k-means clustering. Subsequently each
test video is encoded in the BoW (bag of words) represen-
tation using max pooling over the similarity values between
its space-time segments and the code words, where the sim-
ilarity is measured by histogram intersection. We train one-
vs-all linear SVMs on the training videos’ BoW representa-
tion for multiclass action classification, and the action label
of a test video is given by:

y = argmax
y∈Y

(
wr
y

wp
y

)
(xr xp) + by (4)

where xr and xp are the BoW representations of root and
part space-time segments of the test video respectively, wr

y

and wp
y are entries of the trained separation hyperplane for

roots and parts respectively, by is the bias term and Y is the
set of action class labels under consideration.

For action localization, in a test video we find space-time
segments that have positive contribution to the classification
of the video and output the tracks that contain them. Specif-
ically, given a testing video as a set of root space-time seg-
ments Sp = {sra} and a set of part space-time segments
Sp = {spb}, denote Cr = {crk} and Cp = {cpk} as the set
of code words that correspond to positive entries of wr

y and
wp
y respectively. We compute the set U as

U =

{
ŝr : ŝr = argmax

sra∈Sr

h(sra, c
r
k), ∀crk ∈ Cr

}

∪

{
ŝp : ŝp = argmax

spb∈Sp

h(spb , c
p
k), ∀cpk ∈ C

p

}
(5)

where function h measures the similarity of two space-time
segments, for which we use histogram intersection of their
feature vectors. We then output all the tracks that have at
least one space-time segment in the set U as action local-
ization results. In this way, although space-time segments
in U may only cover a sparse set of frames, our algorithm is
able to output denser localization results. Essentially these
results benefit from the temporal relationships (before, af-
ter) among the root space-time segments in the same track.



Method Supervision Accuracy
Ours (Root + Part) label 81.7%
Ours (Part only) label 71.3%
Raptis et al. [18] label + box 79.4%
Lan et al. [12] label + box 73.1%

Table 1. Mean per-class classification accuracies on the UCF-
Sports dataset. The training/testing split follows [12]. Unlike
[12, 18], we do not require bounding box annotation for training.

5. Experiments
We conducted experiments on the UCF-Sports [19] and

High Five [17] datasets to evaluate the proposed hierarchi-
cal space-time segments representation. These two datasets
are challenging and representative of two different major
types of actions: sports and daily interactions.

5.1. Experimental Setup

We implemented our formulation in Matlab.1 The pa-
rameters for extracting hierarchical space-time segments
are empirically chosen without extensive tuning and mostly
kept the same for both datasets.
UCF-Sports Dataset: The UCF-Sports dataset [19] con-
tains 150 videos of 10 different classes of actions. We use
the training/testing split of [12]. For each root space-time
segment, we use a 3 × 3 × 3 space-time grid and compute
HoG (histogram of oriented gradients), HoF (histogram of
optical flow) and MBH (histogram of motion boundary)
features in each space-time cell. The number of orienta-
tion bins used is 9. For part space-time segments, we use
a 2 × 2 × 2 space-time grid and the other settings are the
same. We build a codebook of 2000 words for root space-
time segments and 4000 words for parts. This dataset con-
tains bounding box annotations on each video frame. While
the compared methods use these annotations in their train-
ing, we do not use them in ours.
HighFive TV-interactions: The HighFive dataset [17] con-
tains 300 videos from TV programs. 200 of them contain 4
different classes of daily interactions, and the other 100 are
labeled as negative. We follow the training/testing split of
[17]. We use the same space-time grid setting as in UCF-
Sports, but to fairly compare with previous results in [6], we
compute only MBH features in each space-time cell. We
build a codebook of 1800 words for root space-time seg-
ments and 3600 words for parts. Again, we do not use the
body bounding box annotations in our training.

5.2. Experimental Results

Action recognition: The action recognition results are
shown in Table 1 and Table 2 for the UCF-Sports and High-
Five datasets respectively.

1Code at http://www.cs.bu.edu/groups/ivc/software/STSegments/.

Method mAP
Ours (Root + Part) 53.3 %
Ours (Part only) 46.3 %
Gaidon et al. [6] 55.6%
Wang et al. [22] 53.4%
Laptev et al. [13] 36.9%
Patron-Perez et al. [17] 32.8 %

Table 2. Mean average precision (mAP) on the HighFive dataset.

subset of frames all frames
[20] [21] [12] Ours [20] [21] [12] Ours

dive 16.4 36.5 43.4 46.7 22.6 37.0 - 44.3
golf - - 37.1 51.3 - - - 50.5
kick - - 36.8 50.6 - - - 48.3
lift - - 68.8 55.0 - - - 51.4
ride 62.2 68.1 21.9 29.5 63.1 64.0 - 30.6
run 50.2 61.4 20.1 34.3 48.1 61.9 - 33.1
skate - - 13.0 40.0 - - - 38.5
swing-b - - 32.7 54.8 - - - 54.3
swing-s - - 16.4 19.3 - - - 20.6
walk - - 28.3 39.5 - - - 39.0
Avg. - - 31.8 42.1 - - - 41.0

Table 3. Action localization results measured as average IOU (in
%) on the UCF Sports dataset. ’-’ means result is not available.
Note that, [20] and [21] need bounding boxes in training and their
models are only for binary action detection, so their results are not
directly comparable to ours.

Class hand shake high five hug kiss Avg.
IOU 26.9 32.9 34.2 29.2 30.8
Recall 79.4 88.8 82.6 80.8 82.3

Table 4. Action localization performance measured as average
IOU (in %) and recall (in %) on the High Five dataset.

On the UCF-Sports dataset, our method is compared
with two state-of-the-art methods [18, 12]. The method in
[18] learns an action model as a Markov random field over
a fixed number of dense trajectory clusters. The method
in [12] uses a figure-centric visual word representation in
a latent SVM formulation for both action localization and
recognition. Both compared methods used more complex
classifiers than the simple linear SVM used in ours. More
importantly, both of them require expensive frame-wise hu-
man bounding box annotations, while ours does not. How-
ever, our method performs slightly better (by 2.3%) than
[18] and significantly better (by 8.6%) than [12]. Although
[18] achieves comparable classification performance with
ours, it cannot provide meaningful action localization re-
sults. The method in [12] can output localization results,
but its localization performance is significantly lower than
ours (see Table 3), as will be discussed in detail later.

On the High Five dataset, our method is compared to
four methods [13, 17, 22, 6]. The method in [6] uses non-
linear SVM on a cluster tree of dense trajectories and pro-
duces state-of-the-art results. The results for [22] and [13]
are produced by using SVM with the histogram intersection
kernel on bag of dense trajectories and STIPs respectively.



The method in [17] uses structured SVM. Despite its im-
plicity, our method achieves comparable performance with
[6] and [22] and significantly better performance than [13]
and [17]. None of the compared methods perform action
localization as our method does.

To assess the benefit of extracting the relevant static
space-time regions that are contained in the root space-time
segments, we compare with a baseline that only uses space-
time segments of parts. The results show that there is a sig-
nificant performance drop (10.4% on UCF-Sports and 7.0%
on High Five) if space-time segments of roots are not used.
This supports our hypothesis that pose information captured
by root space-time segments is useful for action recognition.
Action localization: Table 3 and Table 4 show the ac-
tion localization results on the UCF-Sports and HighFive
datasets. Fig. 6 visualizes localization results on some
example frames of both datasets. The localization score
is computed as the average IOU (intersection-over-union)
over tested frames.

On the UCF-Sports dataset, the method of [12] can only
produce localization results on a subset of frames, so we in-
clude comparisons on this subset. On this subset of frames,
our method performs better than [12] on 9 out of 10 classes
and the average performance is higher by 10.3%. We also
provide our performances on all frames, which are similar
to those on subset of frames. The methods of [20] and [21]
only report action localization results on 3 classes (running,
diving and horse riding) of UCF Sports. Our performance
is higher than [20, 21] in one class (diving) but lower in
the other two. All compared methods use expensive human
bounding box annotations and their learning are much more
complex than ours.

On the HighFive dataset, the IOU is measured over the
frames that are annotated as containing the interactions. We
achieve an IOU of 30.8%, which is still reasonably good
but lower than our results on UCF Sports. We suspect this
may be partly due to the low quality of human bounding
box annotations used for evaluation, as most of them are
too small, covering only the head area of the actors (see
Fig. 6). To verify this, we also compute the recall, which
is measured as the ratio of the area of intersection over the
annotated action area. The high recall values reported in
Table 4 confirm that the annotated action areas are mostly
identified by our method. [20] and [21] have reported action
localization results only on the kiss class, which are 18.5%
and 39.5% respectively. Again, these results are not directly
comparable, since our method requires much less supervi-
sion (only labels) compared to [20] and [21] which require
human bounding boxes.

6. Conclusion and Future Work
In this work, we propose hierarchical space-time seg-

ments for action recognition that can be utilized to effec-

tively answer what and where an action happened in realis-
tic videos as demonstrated in our experiments. Compared
to previous methods such as STIPs and dense trajectories,
this representation preserves both relevant static and non-
static space-time segments as well as their hierarchical re-
lationships, which helped us in both action recognition and
localization. One direction for future work is to make the
method more robust to low video quality, as it may fail to
extract good space-time segments when there is significant
blur or jerky camera motion. A particularly promising di-
rection for future work is to apply more advanced machine
learning techniques to explore the hierarchical and temporal
relationships provided within this representation for even
better action recognition and localization.
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