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Abstract

Human actions are, inherently, structured patterns of
body movements. We explore ensembles of hierarchical
spatio-temporal trees, discovered directly from training
data, to model these structures for action recognition. The
hierarchical spatio-temporal trees provide a robust mid-
level representation for actions. However, discovery of fre-
quent and discriminative tree structures is challenging due
to the exponential search space, particularly if one allows
partial matching. We address this by first building a concise
action vocabulary via discriminative clustering. Using the
action vocabulary we then utilize tree mining with subse-
quent tree clustering and ranking to select a compact set of
highly discriminative tree patterns. We show that these tree
patterns, alone, or in combination with shorter patterns (ac-
tion words and pairwise patterns) achieve state-of-the-art
performance on two challenging datasets: UCF Sports and
HighFive. Moreover, trees learned on HighFive are used in
recognizing two action classes in a different dataset, Holly-
wood3D, demonstrating the potential for cross-dataset gen-
erality of the trees our approach discovers.

1. Introduction
Automatic recognition of human actions in video is im-

portant for applications in surveillance, HCI, video search
and retrieval. Human actions, or interactions, are inher-
ently defined by structured patterns of the humans’ move-
ment. As such, human actions can be modeled as spatio-
temporal graphs, where the graph vertices encode move-
ments of whole body or body parts, and the graph edges en-
code spatio-temporal relationships between pairs of move-
ment elements, for instance temporal progression, e.g., one
movement followed by another movement, spatial composi-
tion, e.g., movement of upper body coupled with movement
of lower extremities, or even hierarchical relationships of
elements, e.g., movement of the body as a whole can de-
compose into local movements of the limbs.

A single spatio-temporal structure, however, is unlikely
to be sufficient to represent a class of action in all but the

...

...

......

10

24

1818

...

temporal edge
(to future)10

root 
action word

space-time segmentspatial  (temporal) overlap

part 
action word24

spatial edge
(to upper space)

Figure 1. One example tree structure discovered by our approach
for the lifting action and its best match in a testing video. In the
tree, one node (red) indexes to a root action word and is matched
to an STS of the upward movement of the whole body; three nodes
(blue) index to the part action words and are matched to STSs of
the upward movement of the upper-body and two temporally con-
secutive movements of the left arm and lower left arm respectively.

simplest scenarios. First, the execution of the action may
differ from subject to subject, involving different body parts
or different space-time progressions of body part move-
ments. Second, the video capture process introduces intra-
class variations due to occlusions or variations in camera
viewpoint. Thus, the resulting space-time and appearance
variations necessitate using a collection of spatio-temporal
structures that can best represent the action at large.

In this work, we propose a formulation that discovers a
collection of hierarchical space-time trees from video train-
ing data, and then learns a discriminative action model
that builds on these discovered trees to classify actions in
videos. Fig. 1 illustrates one simple discovered tree and
its best match in a testing video and Fig. 2 shows more
examples. Given a video, we first extract a collection of
space-time segments (STSs); each STS is a sub-volume that
can be produced by video segmentation, and it may cover
the whole human body or a body part in space-time. We
explore the hierarchical, spatial and temporal relationships
among the STSs; this transforms a video into a graph. We
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discover a compact set of frequent and discriminative tree
structures from graphs of training videos and learn discrim-
inative weights for the trees’ nodes and edges. Finally, we
construct action classifiers given the detection responses of
these trees.

We use trees instead of graphs for multiple reasons: first,
any graph can be approximated by a set of spanning trees;
second, inference with trees is both efficient and exact;
third, trees provide a compact representation as it is easy
to account for multiple structures using a single tree by al-
lowing partial matching during inference (which is no more
expensive). Partial matching of trees during inference also
allows us to effectively deal with variations in action per-
formance and segmentation errors.

We note that, as the size of the tree structures increases
the trees get more specific, thereby capturing more struc-
tural information that can provide greater discriminative
power in classification. On the other end of the spectrum,
smaller structures, particularly singletons and pairs, tend to
appear more frequently in their exact forms than larger tree
structures. Thus, smaller structures can be helpful when the
action is simple but the occlusions or video segmentation
errors are significant. Therefore, for robust action classifi-
cation, the best strategy is to flexibly exploit both the large
and small structures in a unified model.

Contributions: Our contributions are as follows: (1) We
propose an approach that enables discovery of rich high-
level tree structures that capture space, time and hierarchical
relationships among the action words. (2) We propose a dis-
criminative action model that utilizes both small structures
(i.e. words and pairs) and richer, tree structures; this unified
formulation achieves state-of-the-art performance in recog-
nizing and localizing human actions and interactions in real-
istic benchmark video datasets. (3) We show generalization
of the learned trees by cross-dataset validation, achieving
promising results on the Hollywood3D dataset using trees
learned on the HighFive dataset.

2. Related Work

Bag-of-Words (BoW) representations can be quite effec-
tive for action recognition. Space-time features are often
computed from space-time interest point operators [14, 37],
point trajectories [28, 29, 12] or video segments [15]. Usu-
ally a large codebook, with thousands of words, is built by
clustering these local features. The videos are then repre-
sented as (normalized) histogram counts of local space-time
features over the codebook, on which action classifiers, e.g.
SVMs, are trained. While effective in practice, these rep-
resentations lack the spatio-temporal structure necessary to
model progression or structure of an action.

One way to encode spatio-temporal structures is to im-
pose a fixed spatio-temporal grid over the video and con-

struct a BoW representation by concatenating the BoW rep-
resentations from each grid cell [14, 25, 18]. While this en-
codes spatio-temporal structure, the fixed spatio-temporal
grid only offers very coarse structural information and typ-
ically does not align well with the spatial location or tem-
poral progression of the action. Other works have tried to
encode simple structures more explicitly [16, 36]. In [16],
quantized local features are augmented with relative space-
time relationships between pairs of features; in [36] a vi-
sual location vocabulary is computed to incorporate spatio-
temporal information.

Richer structures have also been explored. Generative
models such as HMMs have been used, e.g., [21, 34, 11];
however, the independence assumptions of HMMs are of-
ten not held in practice. Discriminative models, e.g., HCRF,
are also widely used [32, 33, 22, 23]. In each of these works
a single manually defined structure is used to model human
action as a constellation or temporal chain of action parts. In
contrast, we model an action as an ensemble of tree struc-
tures. More importantly, we discover the structures from
data as opposed to defining them by hand. [30] learns mix-
ture models of body parts and spatio-temporal tree struc-
tures using annotated human joints on video frames. Our
method only requires action labels of the videos.

Subgraph mining has also been used for action recogni-
tion [1]. However, subgraph mining techniques only con-
sider exact matching of subgraphs and discover graphs that
are frequent, not necessarily discriminative. We use sub-
graph mining only to produce a large set of candidate sub-
trees, from which, using the proposed clustering and rank-
ing methods, we discover a compact subset of discrimina-
tive and non-redundant subtrees.

Other approaches transform videos into graphs and clas-
sify actions based on these graphs. In contrast to these
methods, which attempt to learn a single holistic graph per
action class [2, 27] or a graph kernel that measures com-
patibility between whole graphs [31, 7, 35], we focus on
identifying frequent and discriminative subtrees. This al-
lows for a more versatile and compact representation that
we also observe is often semantically meaningful.

3. Model Formulation
To capture both the appearance of local space-time seg-

ments (STSs) and the hierarchical, spatial and temporal
structures among them, we transform a video into a graph
where the nodes are STSs and the edges are labeled with
the hierarchical, spatial and temporal relationships among
the STSs. The graph nodes are subsequently given labels
that are indices to a compact but discriminative action word
vocabulary. Thus, in training, the training video set is con-
verted to a set of labeled graphs, from which we discover a
collection of discriminative tree structures for each action.

Formally, a video is represented as a graph G =



{V, At, As, Ah, F}. V is the set of vertices that are
the STSs. At, As and Ah are the time, space and hierar-
chical adjacency matrices containing edge labels (details in
Sec. 5). The rows of matrix F = [f1, f2, ..., f|V |] ∈ R|V |×d
are visual features (e.g. HoG features) extracted from the
STSs. For each action class a, a collection of trees is then
used in constructing an ensemble classifier:

Sa(G, T ) = wT · Φ(G, T ) =
∑

m∈{1,...,|T |}

wmφm(G, Tm),

(1)
where G denotes a test input video, T is the set of learned
tree structures for class a and Tm is one of such trees in
this set, and w = {wm;m ∈ {1, ..., |T |}} is the learned
weight vector. Each φm is a scoring function that measures
compatibility (or degree of presence) of Tm in video G. 1

In the multi-class classification setting, the predicted action
class a∗ of G is computed by a∗ = argmaxa Sa(G, T ).

We formalize a tree as Tm = {N, Et, Es, Eh, β}
where N , {Et, Es, Eh} are the nodes and adjacency ma-
trices respectively. β are discriminative weights associated
with the nodes and edges. Each node ni ∈ N is an index
into a learned discriminative action word vocabularyWa for
class a (described in Sec. 6); each edge Ek

ij (k ∈ {t, s, h})
is associated with a corresponding temporal, spatial or hier-
archical relationship between nodes i and j, similar to the
relations defined for Ak in graph G. The matching score of
a tree to a graph is computed as follows:

φm(G, Tm) = ψ ({ β · ϕ(G, Tm, z) | z ∈ Z(G, Tm)}) ,
(2)

where z is latent variable that represents a match of a tree
Tm to the video G: z is realized as z = (z1, ..., z|N |) where
zi is the index of the vertex in G that is matched to the
ith node in Tm. ψ is a pooling function over the matching
scores of the set of all possible (partial) matches Z(G, Tm).
The matching score of a specific match z to Tm is:

β · ϕ(G, Tm, z) =
∑
ni∈N

βi pn(zi, ni) (3)

+
∑

k∈{t,s,h}

∑
Ek

ij∈E
k

Ek
ij 6=0

βk
ij pk(Ak

zizj , E
k
ij).

where βi and βk
ij (k ∈ {t, s, h}) are the tree node weights

and edge weights respectively. The function pn scores com-
patibility of the tree nodes with graph vertices; pt, ps and ph
score compatibility of the temporal, spatial and hierarchical
graph edges with tree edges. Partial matching is possible
by adding a null vertex v∅ to V as the 0th vertex and also
adding a 0th row and column of zeros to As, At and Ah.

1To avoid notation clutter, we omit the action class label a for T , w,
Φ, φ and ϕ.

Any node in Tm not matched to a vertex in G is assigned to
match the 0th vertex.

Our focus is on discovering the tree structures T . These
structures, their parameters β, as well as parameters of the
ensemble w are learned directly from the data. Given a
tree structure, parameters can be learned in variety of ways,
e.g., using latent SVM [33]. However, discovering the tree
structures themselves is the key challenge as: (1) the space
of tree structures is exponential in the number of tree nodes
and types of relationships allowed among the tree nodes;
(2) partial presence of the trees needs to be considered; (3)
without annotation of body parts, the tree nodes themselves
are to be discovered. Also note that our model unifies small
structures, e.g. singletons in the extreme case, with rich tree
structures: when the trees are singletons, the model essen-
tially reduces to the BoW model.

4. Inference
Given a set of discovered tree structures T , learned pa-

rameter vectors w,β and a test video represented by a graph
G, the score Sa(G, T ) of G containing an action a can be
computed as a weighted sum of independently matched tree
scores φm(G, Tm). If we use average pooling in Eq. 2, then

φm(G, Tm) =

∑
z∈Z(G,Tm) β · ϕ(G, Tm, z)

|Z(G, Tm)|
, (4)

which requires looping through the whole possible set of
latent values Z(G, Tm), which is expensive for trees with
three or more nodes. Max pooling is more appropriate for
larger trees:

φm(G, Tm) = max
z∈Z(G,Tm)

β · ϕ(G, Tm, z). (5)

This can be efficiently computed by dynamic programming
(DP), which we describe next.

Recall that every tree node ni is an index into Wa and
every zi is an index into video graph vertices that are asso-
ciated with features, we define the potentials in Eq. 3 as:

pn(zi, ni) =

{
ecni

(fzi ), cni
(fzi) ≥ δ

0, otherwise
(6)

pk(Ak
zizj , E

k
ij) =

{
1, Ak

zizj = Ek
ij

0, otherwise
(7)

where k ∈ {t, s, h}. The set of classifiers cni
(fzi) ∈ R

score the mapping of the zith graph vertex (associated with
feature fzi ) to the action word which tree node ni indexes
to. The reader is referred to [5] for the details of DP on a
tree, but note when matching ni, the set of possible choices
for graph vertices can be pruned for efficiency to those for
which cni

(fzi) ≥ δ; further, nodes that cannot be matched
are assigned to v∅ to allow partial tree matches.



The DP procedure may match a graph vertex (STS) to
multiple tree nodes if those tree nodes index to the same ac-
tion word. It is possible to alleviate this, e.g., as in [22], but
this would in general introduce high-order potentials requir-
ing more expensive or approximate inference. We find that
assigning multiple nodes is not problematic and can be ben-
eficial in practice to account for video segmentation errors.

5. Discovering Structures

In Sec. 3 we describe how a video is represented as a
graph of STSs. STSs are space-time sub-volumes of the
video and can be produced by video segmentation methods.
We use the method in [15] to extract STSs, because such
STSs are shown to be effective for action recognition and
localization. Given a video, [15] extracts two types of STSs
that can include both static and non-static body parts: root
STSs often covering whole human body and part STSs often
covering body parts. Note no person detector nor human
bounding box annotations are required for this procedure.

We use a small discrete set for edge labels: At ∈ {0,←
,→, ./}|V |×|V |, where ←,→ and ./ denote after, before
and temporal overlap; similarly As ∈ {0, ↑, ↓, ./}|V |×|V |,
where ↑, ↓ and ./ denote above, below and spatial overlap;
Ah ∈ {0, r → r, r → p, p → r, p → p}|V |×|V | denotes
heirarchical root (r) - part (p) relationships. Using coarse
discrete labels helps make the representation more robust to
variations in action execution and STS segmentation errors.

Specifically, for a pair of the ith and jth STS in a video:
(1) Ah

ij is set according to the part / root identity of i and j;
(2) At

ij and As
ij are set as:

At
ij =


./, |ti − tj | ≤ δt
←, ti − tj > δt

→, tj − ti > δt

(8)

As
ij =


./, |yi − yj | ≤ δs
↑, yj − yi > δs

↓, yi − yj > δs

(9)

where ti and tj are the starting frame indices of i and j, yi
and yj are the mean vertical center positions of i and j over
the frames in which i and j co-exist; δt and δs are constants
fixed to 3 (frames) and 20 (pixels) in all our experiments. If
the temporal spans of i and j are disjoint, we let As

ij = 0.
Instead of constructing a complete graph, which can lead

to high computational cost in the subsequent tree mining
procedure, we construct a sparse graph. We group the STSs
into tracks by the method in [15], and only add edges for:
1) each pair of root STSs; 2) each pair of root STS and part
STS in the same track; 3) each pair of part STSs in the same
track that have significant temporal overlap.

5.1. Discovering Tree Structures

We want to find frequent and discriminative tree struc-
tures for action classification (Fig. 2). Enumerating the set
of all possible trees is infeasible due to its exponential size.
Furthermore, in practice, it is hard to find exact presence of
complex trees due to noise in the STS extraction and vari-
ation of action execution, so we must account for partial
matches when counting frequencies. We propose a two step
approach: first, we mine a large and redundant set of trees
using a tree mining technique that only counts exact pres-
ence; second, we discover a compact set of trees by clus-
tering and ranking the mined trees using a form of cosine
distance on their discriminative parameter vectors β.

Tree Mining: We use the subgraph mining algorithm
GASTON [17] to mine frequent trees with at most six ver-
tices. The number of mined trees is controlled by the min-
imum support threshold parameter for each class so that
5×103 ∼ 1×104 trees are mined per action class. For each
action class, we mine trees from both positive videos and
negative videos and remove the trees that appear in both.

We then train discriminative parameters β for each
mined tree. Given a mined tree Tm, we initialize β by set-
ting all node weights to 1 and edge weights to 0.5. We find
the best matches of the tree in the graphs constructed from
training videos, using the inference procedure in Sec. 4. β
is then refined by training a linear SVM on the set of best
matches. This procedure is similar to performing one itera-
tion of latent SVM, except much faster.

Tree Clustering: The trees we mine using GASTON
tend to be highly redundant, especially if one considers par-
tial matching. To avoid the redundancy and discover a set of
trees that effectively cover intra-class variations, we cluster
the mined trees and select the best tree from each cluster.
To compute similarity between two trees, Tm and T̂m, we
utilize the inference procedure in Sec. 4 by treating one of
the trees (e.g., T̂m) as a weighted graph with weights on
the nodes and edges corresponding to learned parameters
β̂. The potentials in φm(Tm̂, Tm) for Eq. 3 are then altered
as follows:

pn(zi, ni) =

{
β̂zi , n̂zi = ni

0, n̂zi 6= ni or zi = v∅
(10)

pk(Êzizj , Eij) =

{
β̂k
zizj , Êk

zizj = Ek
ij

0, otherwise
(11)

where n̂zi is the zith tree node of Tm̂ and k ∈ {t, s, h}.
Note that this procedure will give us essentially the edit co-
sine distance (cosine distance since when structures are the
same, φt(Tm̂, Tm) = β · β̂). This similarity measure be-
tween trees takes into account both similarity in structure
and similarity in discriminative parameters β.

After computing the similarities between each pair of
trees, we run affinity propagation [6] to cluster the trees and
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Figure 2. Examples of discovered trees. For each tree, we also show inference results on two testing videos. See the legend of Fig 1 for
the meaning of the figure components. The space-time segment enclosed by dotted box is matched to multiple tree nodes.

pick the tree that has the highest cross validation accuracy
in each cluster as the non-redundant prototype.

Tree Ranking: The above procedure still tends to find a
relatively large number of trees (≈ 150 per class or more).
Our hypothesis, which we validate in experiments, is that
only a subset is needed for classification. To pick the best
candidates we need some measure of quality among the can-
didates. We find cross-validation to be unstable here, and
instead propose ranking based on entropy. We compute an
activation entropy for each selected tree Tm:

Entropy(Tm,G) = −
∑
c

Pc(Tm,G) log(Pc(Tm,G)),

(12)

Pc(T,G) =
|{G | ∀ G ∈ G, φm(G, Tm) ≥ 0, L(G) = c}|

|{G | ∀ G ∈ G, φm(G, Tm) ≥ 0}|
,

(13)
where G is the training set and L(G) is class label of G.
The numerator encodes the number of videos in class c
that are classified as positive using Tm and denominator
the number of videos classified as positive over the train-
ing set. Intuitively, trees with smaller activation entropies
have more consistent patterns in classification errors, and
are more likely to be stable structures in human actions.

Despite the large set of trees that we mine, in the experi-
ments we illustrate that by using only a compact set of trees
attained through the above process (20 trees per action in
UCF-Sports, and 50 per action in HighFive) state-of-the-art
recognition performance is achieved.

5.2. Discovering Pairwise Structures

When occlusion or video segmentation errors are signif-
icant, it is easier to find exact matches for smaller struc-
tures than larger ones. Pairs in particular are shown to be
effective for classification e.g. as in [16]. Our tree discov-
ering approach described in the previous section can find
useful pairwise structures, but is by no means exhaustive.
Meanwhile, our formulation of a video as a graph enables
a simple exhaustive search for a set of compact and yet dis-
criminative pairwise structures.

Specifically, denote P as the space of pairs for action
class a, then |P| = (|Wa| − 1)|Wa||E|/2, where E denotes
the space of edge labels and in our case |E| = 3×3×4 = 36.
In our experiments |Wa| is 50 ∼ 150 , so |P| ≤ 4 × 105.
We construct a histogram H ∈ R|P| for each training graph
G. The pth bin, Hp = κp/(

∑
i∈{1,...,|P|} κi), where κp

denotes appearance counts of the pth pair in G. We then
compute the mean H+

p over the graphs of positive training
videos. Recall that we are after frequent and discrimina-
tive structures. Since our action words are discriminatively
trained, our main criterion for selecting a pair is frequency
H+

p . As allowing partial matching for pairs may reduce to
matching action words, we require exact matching in infer-
ence and set node weights β1 = β2 = 1/2, edge weights
βk
12 = 0 and pk(Ak

z1z2 , E
k
12) = 1 for k ∈ {t, s, h}.

6. Building the Action Word Vocabulary

In BoW approaches, large vocabularies with several
thousands of words are typically used. We argue that if
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Figure 3. Representative action words: for each action word, we show 5 space-time segments (illustrated by one temporal slice) that are
in the cluster corresponding to the action word.

the words are discriminative enough, a small vocabulary
can perform at least equally well as larger ones. Here we
propose a method to construct a compact and yet discrim-
inative action word vocabulary, which can be one order of
magnitude smaller than the one used in [15] while achiev-
ing similar performance in our experiments. Furthermore,
such small vocabularies help greatly reduce the complexity
of tree discovery, as the space of trees of length m is expo-
nential in the size of this vocabulary, i.e., O(|W|m). Fig. 3
shows some representative action words. We see that the
STS clusters for these action words tend to be coherent and
semantically meaningful.

Specifically, we learn the set of action words by discrim-
inative clustering of the STSs. Recall there are two types
of STSs extracted: root STSs and part STSs. Clustering
is done separately for roots and parts; as a result, we get
clusters Wr

i and Wp
i for the roots and the parts respec-

tively and Wi = Wr
i ∪ W

p
i . We use discriminative sub-

categorization (DSC) [10] to perform the clustering in each
action class i, where the negative samples are the STSs ex-
tracted from videos of other action categories. DSC treats
the cluster memberships of samples as latent variables and
jointly learns one linear classifier per cluster using latent
SVM. As we believe the vocabulary should be data-driven
and adapt to the complexity of the dataset and action class,
we perform an initial clustering using the affinity propaga-
tion algorithm [6] to decide the number of clusters and the
initial cluster membership for each sample.

7. Learning the Ensemble
The main focus of our work is on discovery of larger

space-time tree structures (Sec. 5.1). We also consider
pairwise structures (Sec. 5.2) and trivial structures of ac-
tion words (Sec. 6) as special cases that can be discovered
through exhaustive search or clustering. We observe that
larger structures (i.e., trees) tend to be more discriminative
than smaller ones (i.e., action words and pairs), but appear
in their exact form less frequently (thus, inexact matching

is crucial). In practice, we have found that a combination
of simpler and more complex structures tends to offer more
robustness. Given the set of trees, and their responses on
the training set obtained by inference on the training set of
videos, we train parameters w using linear SVM jointly (us-
ing multi-class SVM [3]). When combining words, pairs
and trees, we experiment with both early fusion and late
fusion. In early fusion, the inference responses of differ-
ent types of structures are concatenated and the ensemble
weights are learned using SVM. In late fusion, one SVM is
trained per structure type and we then train a separate SVM
to combine their outputs.

8. Experiments

Setup: We test our methods on two benchmark datasets:
UCF-Sports [24] and HighFive [20]. UCF-Sports contains
150 videos of 10 different sports actions. We use the train-
ing / testing split provided by [13], in which 47 videos are
used for testing and the rest for training. HighFive contains
300 videos from TV programs. 200 of the videos contain 4
different interactions and the other 100 are labeled as nega-
tive. We use the training / testing split that is provided in the
dataset. Both datasets provide bounding box annotations,
which we do not use in training. To ease comparison with
results reported in previous works, action recognition per-
formance is measured in terms of mean average precision
on HighFive and mean per-class accuracies on UCF-Sports.

Implementation: We extract hierarchical space-time
segments from videos using the code provided by [15] with
the same parameters. From each space time segment, the
same types of raw features as [15] are extracted: HoG, HoF
and MBH on UCF-Sports and MBH on HighFive. We em-
pirically found that max pooling works better for action
words and trees, and average pooling is better for pairs.
Thus, when combining them (Table 3), we use max pool-
ing for words and trees and average pooling for pairs. We
learn the ensemble parameters by using liblinear [4].



Figure 4. Action recognition performance vs. number of trees. The
performance improves quickly when more than one tree is used,
but such gain becomes small after approximately the first 20 trees.

Action Word Vocabulary: The total number of action
words we discover is approximately 700 for HighFive and
600 for UCF-Sports. This is an order of magnitude smaller
than in [15], but similar performance is achieved using only
these action words (see Table 3).

Quality of Tree Discovery: Our goal is to discover a
compact set of frequent and discriminative structures that
can be used to attain good action recognition performance.
Therefore, one critical question is how many structures
should be selected from our discovered and ranked list of
trees (ranked by Entropy(Tm,G)) and pairs (ranked by
H+

p ). Fig. 4 illustrates the performance as a function of the
selected trees. We note that with a single tree, the perfor-
mance is low; this indicates the need for an ensemble. How-
ever, performance improves quickly, which validates our
ranking. After the first ∼ 20 trees, the performance gains
are small. For pairs, the trend is similar but significantly
more pairs are need than trees to achieve the same level of
performance. Based on these observations, we choose to
use 50 trees and 100 pairs per class for HighFive, and 20
trees and 40 pairs per class for UCF-Sports.

Action Classification: Comparison of our full model to
the state-of-the-art methods is given in Tables 1 and 2. Since
we use the same space-time segments and low level features
as [15], the gains of the hierarchical, spatial and temporal
structures we discover are best illustrated in the compari-
son with their bag-of-words approach: we outperform by
more than 8% on both datasets. We also compare with other
methods that use different video features. In contrast to our
simple linear model, [7, 31] rely on complex graph kernels.
[26, 22, 13] model human actions with space-time struc-
tures, but the number of nodes in the structures and their
inter-connections are pre-determined; moreover, in train-
ing they require human bounding box annotations on video
frames. Note our method automatically discovers the struc-
tures and only needs action labels of the training videos.
Nonetheless, our approach consistently achieves better per-
formance, improving on the state-of-the-art.

Analysis of Different Components: We decompose our
full model and analyze the performance impact of each

Method mAP
Our (Early Fusion w+t+p) 62.7
Our (Late Fusion w+t+p) 64.4
Gaidon et al.[7] 62.4
Ma et al.[15] 53.3
Laptev et al.[14] 36.9
Patron-Perez et al.[19] 42.4

Table 1. Mean average precision (mAP) on the HighFive dataset.

Method Accuracy
Ours (Early Fusion w+t+p) 89.4
Ours (Late Fusion w+t+p) 86.9
Wang et al.[31] 85.2
Ma et al.[15] 81.7
Raptis et al.[22] 79.4
Tian et al.[26] 75.2
Lan et al.[13] 73.1

Table 2. Mean per-class accuracy on UCF Sports dataset.

w p t w+p w+t p+t w+p+t
High5 53.5 48.9 52.4 60.1 57.7 57.6 62.7
UCF 78.8 73.4 75.5 85.2 83.6 80.2 89.4

Table 3. Action recognition performance (mean average precision
for HighFive and mean per-class accuracy for UCF-Sports) using
only words, pairs or trees, as well as their combinations. Early
fusion is used for combining different types of structures.

component, i.e. the action words, pairs and trees. The re-
sults of this analysis are reported in Table 3. Several obser-
vations can be made. First, using only trees, pairs or action
words, we attain performance comparable to state-of-the-
art. Second, although the total number of action words is
an order of magnitude smaller than the codebooks used in
[15, 28], similar performance is achieved using only these
action words. Our compact set of action words greatly re-
duces the search space for tree structure discovery, without
sacrificing discriminative power. Third, in all cases, com-
bination works better than using a single type, especially
when combining pair and tree structures with action words.
This shows that the words, pairs and trees are complemen-
tary. We posit that larger structures are more discriminative
but less frequently appear in their exact forms than smaller
ones, leading to the complementarity observed.

Tree Size: We analyze the impact of tree size on the
action classification performance for UCF-Sports in Fig 5,
where the tree size is measured as the number of tree nodes.
For trees of a given size, we order the trees by their activa-
tion entropy (Eq. 12) and measure the action classification
performance when varying the number of trees used. When
using only one tree, larger trees tend to outperform smaller
trees. When more trees are used, larger trees produce bet-
ter performance than smaller trees for most of the cases.
These results show the increased discriminative power as



Figure 5. Action classification performance under different tree
sizes on the UCF-Sports dataset. Larger trees outperform smaller
ones for most of the cases.

Figure 6. Action localization results on UCF-Sports. Trees may
miss some body parts, resulting in lower recall and IOU, but they
localize to the action performer(s) with very high precision.

we capture more complex hierarchical, spatial and tempo-
ral structures in the human actions. However, we also argue
that smaller tree structures are complementary to larger tree
structures. For instance, for videos of simple actions but
significant occlusion or video segmentation errors, smaller
trees can be helpful when used in combination with larger
tree structures; the combination attains state-of-the-art per-
formance (Table 3).

Action Localization: Our method can predict the action
location by computing the regions of the STSs that have
positive contribution in classification. As human bounding
box annotations in HighFive only contain head and shoul-
ders, which makes evaluation less meaningful, we only con-
sider UCF-Sports here. Overall, the localization perfor-
mance is similar to [15] (see Fig. 6), when measured by
intersection-over-union (IOU) following [15]. More inter-
estingly, using only trees, the precision (i.e., percentage of
predicted area that is within annotated bounding box) is
much higher (by ∼ 15%) than using only words or pairs,
but the recall (i.e., percentage of annotated bounding box
areas that are predicted) is lower. Because the trees are
learned in a discriminative approach, they may sometimes
ignore body parts that are not discriminative; nevertheless,
trees can more precisely localize the human(s) engaged in
the action.

Method Kiss Hug Avg
Ours (trees from HighFive) 20.8 27.4 24.1
Hadfield et al.[8] 10.2 12.1 11.15
Hadfield et al.[9] 31.3 32.4 31.9

Table 4. Average Precision on Hollywood3D dataset.We use 50
trees learned for the Kiss and Hug classes on HighFive receptively.
Only the left view of the RGB sequences are used, without using
any multi-view or depth information that are explored in [8, 9].

8.1. Cross-Dataset Validation

Our approach discoveres trees that capture the discrim-
inative hierarchical and spatial-temporal structures in hu-
man actions. These learned representations are generic, and
could potentially be effective for recognizing actions in a
dataset different from the training dataset. To test this idea,
we use the action word vocabulary and trees learned for
Kiss and Hug on the HighFive dataset, and train action clas-
sifiers as ensembles of trees on Hollywood3D [8]. Note,
only the ensemble weights (i.e., wm in Eq. 1) are re-trained
on Hollywood3D. We choose Kiss and Hug because they
are the only action classes that appear in both datasets. We
only use the left view of the RGB sequences (no multiview
or depth information is explored).

The results are shown in Table 4. Note the compared
methods [8, 9] explore the depth information provided in
the dataset. Due to the differences between the HighFive
dataset and the Hollywood3D dataset and lack of multi-
view and depth information, we do not expect to outperform
state-of-art methods, but still we significantly outperform
[8], doubling the performance in terms of average precision.

HighFive and Hollywood3D differ in many ways. Most
importantly, the action categories differ significantly: while
the trees are trained on HighFive to best discriminate Hug
or Kiss from High Five and Hand Shake, on Hollywood3D
they achieve promising performance in discriminating Hug
or Kiss from 11 other actions such as Eat and Use Phone
that the original tree discovering had no knowledge about.
These results are further evidence for the generalization and
discriminative power of the trees we discover, and show po-
tential for re-use of the learned trees across datasets.

9. Conclusion
Our approach discovers a compact set of hierarchical

space-time tree structures of human actions from training
videos. Using an ensemble of the discovered trees, or in
combination with simpler action words and pairwise struc-
tures, we build action classifiers that achieve state-of-the-
art performance on two challenging datasets: HighFive and
UCF-Sports. We also show cross-dataset generalization of
the trees learned on HighFive on the Hollywood3D dataset.
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[28] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-
jectories and motion boundary descriptors for action recog-
nition. IJCV, pages 1–20, 2013. 2, 7

[29] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013. 2

[30] L. Wang, Y. Qiao, and X. Tang. Video action detection with
relational dynamic-poselets. In ECCV, 2014. 2

[31] L. Wang and H. Sahbi. Directed acyclic graph kernels for
action recognition. In ICCV, 2013. 2, 7

[32] Y. Wang and G. Mori. Learning a discriminative hidden part
model for human action recognition. In NIPS, 2008. 2

[33] Y. Wang and G. Mori. Hidden part models for human ac-
tion recognition: Probabilistic versus max margin. TPAMI,
33(7):1310–1323, 2011. 2, 3

[34] D. Weinland, E. Boyer, and R. Ronfard. Action recognition
from arbitrary views using 3D exemplars. In ICCV, 2007. 2

[35] B. Wu, C. Yuan, and W. Hu. Human action recognition based
on context-dependent graph kernels. In CVPR, 2014. 2

[36] X. Yang and Y. Tian. Action recognition using super sparse
coding vector with spatio-temporal awareness. In ECCV,
2014. 2

[37] H. Zhang, W. Zhou, C. M. Reardon, and L. E. Parker.
Simplex-based 3D spatio-temporal feature description for
action recognition. In CVPR, 2014. 2


