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Abstract. Unsupervised learning of relative visual attributes is impor-
tant because it is often infeasible for a human annotator to predefine and
manually label all the relative attributes in large datasets. We propose
a method for learning relative visual attributes given a set of images for
each training class. The method is unsupervised in the sense that it does
not require a set of predefined attributes. We formulate the learning as a
mixed-integer programming problem and propose an efficient algorithm
to solve it approximately. Experiments show that the learned attributes
can provide good generalization and tend to be more discriminative than
hand-labeled relative attributes. While in the unsupervised setting the
learned attributes do not have explicit names, many are highly corre-
lated with human annotated attributes and this demonstrates that our
method is able to discover relative attributes automatically.

1 Introduction

There has been increasing interest in visual attribute models for computer vi-
sion [1–4]. The key idea is that visual attributes describe properties of entities
and are often shared by many different classes; thus, attribute models learned
on a set of classes can be useful for describing other, previously unseen classes.

Visual attributes can be divided into binary and relative attributes. Previous
studies have mainly focused on binary attributes. Recently, Parikh and Grauman
proposed the use of relative attributes [5], which describe the relative strength
of the presence of a visual attribute. In comparison to binary attributes, relative
attributes are more natural and informative in describing many visual aspects
of objects and scenes.

Attribute learning methods can be divided into supervised and unsupervised
based on the availability of a list of annotated attributes on the training data.
Jointly learning attributes and class models on datasets with labeled attributes
has been widely studied [1–4, 6–9]. All of these methods yield good performance,
particularly with respect to the learned attributes’ good generalizability to test
classes that are not present in learning; however, these methods require a human
to predefine the attributes and provide labeled training data.

Supervised learning of attributes has several problems. Firstly, a manually
defined set of attributes may be intuitive but not very discriminative for the task
at hand. Secondly, some discriminating attributes may be overlooked or difficult
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Fig. 1. Example learned relative attributes for the datasets OSR (top row) and PUB-
FIG (bottom row). Each row shows one sample image from each class, presented in
order with respect to the learned attribute. In our experiments, the method discovers
attributes that are highly correlated with human-labeled attributes: the illustrated at-
tributes highly correlate with human-labeled attributes Open and Young respectively.

to express in words. Thirdly, attribute labels are produced by annotators’ sub-
jective judgements, which may be erroneous [6]. Fourthly, the required human
supervision hinders the method’s scalability to a large number of attributes.

Other works employ semi-supervised learning of attributes by leveraging in-
formation retrieval techniques, e.g., [6, 10–12]. While these techniques reduce the
need for annotation, there are two main problems. Firstly, labels from web search
or text retrieval tend to be loose and noisy. Secondly, some visual attributes are
rarely described by text and are thus hard to learn with these methods.

Another line of work uses active learning to acquire models of attributes.
Parikh and Grauman [13] propose a method that automatically identifies binary
attributes that are probably nameable and asks human annotators to either
name the identified attribute or reject it as unnameable. Kovashka, et al. [14]
also use active learning to acquire attribute models. Both methods achieve a good
balance between the required annotation work and quality of learned attributes;
however, they only consider binary attributes.

Methods have also been proposed for unsupervised learning of binary at-
tributes [2, 4, 12, 15] that provide good generalizability and discriminative prop-
erties. However, to the best of our knowledge, there is no previous work on
unsupervised learning of relative attributes, which is the focus of this paper.
Given the demonstrated value of relative attributes and the problems of su-
pervised learning, we would expect our method to be useful. The difficulty in
unsupervised learning of relative attributes is that the search space is very large
(factorial to the number of classes). Furthemore, certain attributes may only be
meaningful to a subset of training classes, depending on whether the strength
of the attribute is shared to the same extent among the majority of instances
of a class; consequently, the search for relative attributes should also include
orderings of subsets of training classes – making the search space even larger.

Contributions: We formulate the unsupervised relative visual attribute
learning problem as a mixed integer programming problem and propose an ap-
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proximation algorithm that performs greedy search in the space of all possible
relative attributes. Our method also infers orderings of the relevant training
classes with respect to each learned attribute (see examples in Fig. 1). Our ex-
periments on the datasets of [5] show that our automatically learned attributes
are discriminative and complementary to hand-labeled relative attributes, and
they offer good generalizability to classes that were unseen during training. We
also demonstrate that, while in the unsupervised setting the learned attributes
do not have explicit semantic names, our method is able to automatically dis-
cover all the human annotated attributes for the datasets tested.

2 Automatic Relative Attribute Learning

2.1 Formulation

In training, we are given a set of images I = {i} represented by feature vectors
{xi} and image class labels {ca}. Relative attribute annotations in the form of
class orderings are not given; instead, we want to identify those during training
along with the set of learned attribute rank functions. To make things simpler,
we only consider relative attributes that contain strict pairwise orders. The rank
function that we want to learn for each relative attribute am is as follows:

rm(xai ) = wT
mx

a
i , s.t. wT

mx
a
i > w

T
mx

b
j , i ∈ ca, j ∈ cb, ca � cb, (1)

where xai is the feature vector of training image i from class ca.
Our formulation is based on the one used in [5], and we introduce decision

variables to represent missing attribute annotation information. We define µa =
1 if the attribute is relevant to ca otherwise µa = 0, and for ∀a, b, a > b we
define

δab =


1 ca � cb
−1 ca ≺ cb
0 µa = 0 ∨ µb = 0.

(2)

Intuitively, if an attribute is relevant to more training classes, then it may
represent a general attribute that is likely to be relevant to new classes unseen
in training. To embody this intuition, we add the ratio of irrelevant classes into
the minimization objective. Finally, our formulation for unsupervised relative
attribute learning is:

min
wm,ξ,δ,µ

1
2
||wT

m||22 + C1

∑
ξ2ij,ab + C2(1− 1

N

∑
µa) (3)

s.t . δabw
T
m(xai − xbj) ≥ min(µa, µb)− ξij,ab,

∀(i, j), i ∈ ca, j ∈ cb, a > b (4)
|δab − δbc| ≥ |δab − δac|, ∀a > b > c, µa = µb = µc = 1 (5)
|δab| = µa, ∀a ∈ {2, . . . , N} (6)
|δab| = µb, ∀b ∈ {1, 2, . . . , N − 1} (7)
ξij,ab ≥ 0, δab ∈ {−1, 0, 1}, µa ∈ {0, 1}. (8)
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N is the number of training classes, a, b, c are training class indices, and C1 and
C2 are tradeoff constants among the margin, loss and ratio of irrelevant classes.

For a > b > c, constraint (5) requires that if ca � cb, cb � cc then ca � cc
and if ca ≺ cb, cb ≺ cc then ca ≺ cc, which enforces that the pairwise orderings
between classes do not contradict each other. Constraints (6) and (7) ensure
that the value of δab is well defined according to (2). For two classes ca and
cb, if ca � cb then δab = 1, µa = µb = 1 and thus constraint (4) becomes
wT
m(xai − xbj) ≥ 1− ξij,ab; if ca ≺ cb then δab = −1, µa = µb = 1 and constraint

(4) becomes wT
m(xbi−xaj ) ≥ 1−ξij,ab; if one (or both) of ca, cb is irrelevant to the

attribute, then one (or both) of µa, µb becomes zero and (4) reduces to ξij,ab ≥ 0,
which essentially removes constraints of irrelevant classes. We note that if the
values of µ and δ are fixed (as in the fully supervised setting), then the above
reduces to formulation of [5], but considering only strict pairwise orderings.

2.2 Algorithm

The above formulation presents a mixed-integer programming problem and is
hard to solve directly. We propose an algorithm to find an effective, approximate
solution, which is summarized as follows. At the start of each run of the algorithm
we give initial values to µ, δ. Given µ, δ are fixed, we update wm using an SVM
solver. Once wm is updated, we then fix wm and update µ, δ. The reduced
problem for learning µ, δ is still a mixed integer program, so we propose a
greedy algorithm to solve it. The algorithm is run multiple times initialized with
every possible pair of classes and each run yields a candidate relative attribute.
After learning the set of candidate relative attributes, we remove redundant
ones. In our implementation, if the absolute value of the cosine between wm and
wn is in the range [0.9, 1], then one of the corresponding attributes is removed.
Our key ideas in this algorithm are: choosing a broad set of initializations that
tend to yield a broad set of useful attributes, and using an efficient algorithm to
update µ, δ. More details of our algorithm are given below.

Initialization: At start of the algorithm, we first pick a pair of classes, say
ca and cb (a > b), and initialize µ and δ as follows:

µk =

{
1 k = a ∨ k = b

0 otherwise
δkh =

{
1 k = a ∧ h = b

0 otherwise.
(9)

Thus, all classes except ca and cb are set to be irrelevant to the attribute in this
initialization. Additional classes can be discovered as relevant in subsequent iter-
ations. An intuitive explanation for this initialization method is that by making
as few assumptions about the initial values of µ, δ as possible, we may consider
a broad search space for learning attributes. All possible pairs of classes are used
for initialization. As the number of training classes increases, the diversity of the
data may also increase, so there may be additional useful relative attributes and
the algorithm is run more times to learn these attributes. For a training set of
N classes, the total number of class pairs is 1

2N(N − 1), which is manageable.
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Updating wm: When the values for µ, δ are fixed, learning wm reduces to
a form that is similar to SVM learning but on pairwise difference vectors. We
apply a standard SVM solver [16] to learn wm. To speed up learning, we only
generate constraints (4) between classes that are adjacent in the class orderings
of that relative attribute. When wm is learned, we compute the objective value
and stop the training if it stops decreasing. If µa = 1 for all classes ca, we also
stop training, since no classes remain to be added to the list of relevant classes.

Updating µ, δ: When wm is fixed, the formulation in Sec. 2.1 is still hard
to solve directly. We use a greedy algorithm to solve this problem. At iteration
t, we want to pick a class, say ca, which is labeled as irrelevant by the previous
iteration and which will introduce the least additional loss if labeled as relevant
at this iteration. We then want to add ca to the list of relevant classes and
update the values of µ, δ accordingly. First, for any class cb such that µt−1

b = 1,
we compute mt

b = median({pj |pj = wtT
m x

b
j , j ∈ cb}). The resulting set of mt

b will
divide the real line into several bins. Then, for any class ca such that µt−1

a = 0,
we compute the entropy eta of the set {p|p = wtT

m x
a
i , i ∈ ca} over the histogram of

the real line whose bin boundaries are negative infinity, the sorted set of mt
b, and

infinity. Finally, we select the class that has the smallest entropy and add it to the
list of relevant classes. This strategy selects the relevant class without explicitly
computing the pairwise loss. Although the selected class may not be the class
that introduces the least loss under the ranking function, it will introduce low
loss because the projections of samples in that class tend to aggregate on the
projection line between the medians of projections of relevant classes’ samples.
After selecting a class ca to add to the list of relevant classes, we update µ, δ

µtk =

{
µt−1
k , k 6= a

1, k = a
(10)

δtkh =


δt−1
kh , k 6= a ∧ h 6= a

1, (k = a ∧ mt
a > mt

h) ∨ (h = a ∧ mt
k > mt

a)
−1, (k = a ∧ mt

a < mt
h) ∨ (h = a ∧ mt

k < mt
a)

0, (k = a ∧ µth = 0) ∨ (h = a ∧ µtk = 0)

(11)

where mt
a is the median value of the set {pi|pi = wtT

m x
a
i , i ∈ ca}.

3 Experiments

To evaluate our formulation, we used two datasets: the Outdoor Scene Recogni-
tion (OSR) Dataset [17] containing 2688 images of 8 categories, and a subset of
the Public Figure Face Database (PUBFIG) dataset [4] containing 772 images
from 8 random identities (almost 100 images each). This is the same setting
provided by the authors of [5] and we used the same features: a 512-D gist [17]
descriptor for OSR and a combination of 512-D gist descriptor and 45-D lab color
histogram for PUBFIG. The train/test split was provided with the datasets.
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Fig. 2. Multi-class classification results.

We conducted experiments that evaluate our learned relative attributes in
multi-class classification and K-shot classification. We also conducted an exper-
iment that examines the correlation between our automatically-learned relative
attributes and human-labeled relative attributes. Our Matlab implementation
will be made available via ftp. The CPU time for attribute learning in Matlab
is 127 seconds for OSR and 102 seconds for PUBFIG (28 attributes on each
dataset) on a laptop (2.4 GHz Intel Core 2 Duo, 2G memory).

3.1 Multi-class Classification

In this experiment, we trained multi-class SVM classifiers with an RBF kernel
by libsvm [18] using: (a) relative attributes learned by our unsupervised algo-
rithm (UATs); (b) relative attributes learned by the supervised algorithm [5]
(SATs); (c) combination (UATs+SATs); (d) linear SVM learned between each
pair of classes (BINs); (e) PCA; (f) Fisher’s Linear Discriminant between every
pair of classes (FLD). The latter three are included as baselines of mid-level
features. For SATs, we used the attribute values provided by the authors of [5].
30 images per class were used for training and the others for testing. The classi-
fication accuracy was computed as the mean per-class accuracy, i.e., the number
of correctly classified test samples vs. total number of test samples. Fig. 2 re-
ports classification accuracy as a function of the number of attributes used. For
UATs, SATs, BINs and FLD, we ran the experiments 30 times using different
attribute (or feature) orders and report the mean. For UATs+SATs, we used all
the SATs while varying the number of UATs, according to the reverse order of
their correlation to the SATs, with least-correlated UAT added first, as will be
explained in Sec. 3.3. For PCA, the principal components are used in order of
their eigenvalue (maximum first).

In Fig. 2, it appears that the performance using SATs is limited by the num-
ber of labeled attributes: only 6 annotated relative attributes for OSR and 11 for
PUBFIG. However, our algorithm learns more attributes: we learned 25 relative
attributes for OSR (3 redundant attributes were removed) and 28 for PUB-
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Fig. 3. K-shot classification performance. Total number of classes remains 8.

FIG. We also observe that combining SATs+UATs increases the classification
accuracy over using SATs alone, which shows that the UATs can capture some
discriminative information that may be overlooked by humans when labeling the
relative attributes. However, the overall performance of UATs+SATs is similar
to using only UATs. This is consistent with results reported for binary attributes
in [2], and we think it may be due to the high correlation between the labeled
relative attributes and some of the relative attributes learned by our algorithm.
On both datasets, UATs perform better than mid-level feature baselines. The re-
sults show our method performs better than dimensionality reduction techniques
PCA and FLD. Note that, our method should not be seen as a dimensionality
reduction technique because when the number of classes increases, additional
useful attributes may be learned and the resulting attribute space may not be
smaller than the raw feature space.

We also compared the ability of BINs and UATs to order the classes, using
an entropy criterion similar to the one in Sec. 2.2. The results show that UATs
produce class orderings that have lower entropy than for BINs and thus better
separate the classes (detailed results are omitted due to space limitations).

3.2 K-Shot Classification

To evaluate the generalizability of learned attributes, we performed K-shot clas-
sification. In our setting, 2 classes (we call them K-shot classes) were left out
and attributes were trained on the other 6 classes. The learned attributes were
then used in a 1NN classifier for multi-class classification, with K training im-
ages for each K-shot class and all training images for the other classes (30 per
class). We plotted the classification accuracy against varying K value for the
1NN classifier. For each possible choice of K-shot classes and choice of K, we
repeated the experiment 10 times (each time randomly selecting K training im-
ages from each K-shot class) and computed the mean accuracy. We compared
6 image representations: (a) original features (ORIG); (b) SATs; (c) UATs; (d)
UATs+SATs; (e) BINs; (f) PCA; (g) FLD. For SATs, we used the code and
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parameter settings provided by the authors of [5] to learn the attributes. For
PCA, the number of used principal components is set to be the same as number
of attributes in UATs+SATs. Fig. 3 reports the results.

The results indicate that the attributes learned by the unsupervised algo-
rithm and the supervised algorithm can complement each other, and also show
that the UATs can yield good discrimination even if there are few training ex-
amples for a test class. For the OSR dataset, SATs perform worse than the
original features (ORIG), while for the PUBFIG dataset SATs preform better
than ORIG. We suspect that this may due to the attribute annotations: it is
hard to control the quality (in terms of discriminative power and generalizabil-
ity) of manually labeled attributes. Besides, there are only 6 labeled relative
attributes for the OSR dataset, which may also limit performance. Our method
discovers a larger set of relative attributes for this dataset, and sidesteps this
limitation. When K is small (the more interesting case), UATs perform better
than mid-level feature baselines. When K is large, the performances of UATs and
BINs are similar, but we emphasize here that comparing to mid-level features,
our method is explicitly designed to identifying useful class orderings (Sec. 3.3).

3.3 Correlation Analysis

In this section we analyze the correlation between automatically learned relative
attributes and human-labeled relative attributes. For each pair of automati-
cally learned class ordering and manually labeled class ordering, we compute
the Kendall Tau correlation:

τ =
nc − nd

1
2n(n− 1)

(12)

where nc and nd are the number of concordant and discordant pairs between the
two orderings respectively and n is the total number of pairs. The range of τ is
in [−1, 1] and it is 1 if the two orderings are the same (-1 if reversely the same).
Considering anti-correlation, we used its absolute value: τ̂ = |τ |. Learned class
orderings may contain only a subset of classes and in these cases we compute the
correlation between the learned class ordering and the corresponding sub-list of
the labeled class ordering.

Table 1 shows the results and from it we can see that for all of the human-
labeled relative attributes, there are automatically learned relative attributes
that are highly correlated with them. One potential application is to learn rela-
tive attributes using our unsupervised algorithm before labeling semantic relative
attributes, and use these learned attributes as initial guidance for annotation.
Furthermore, we observe that some learned relative attributes are not highly
correlated with any of the human-labeled relative attributes. These may corre-
spond to attributes that were overlooked by the annotator or hard to be concisely
described. We now test the hypothesis that these attributes are indeed useful
and can complement the human-labeled relative attributes. In the multi-class
classification setting (Sec. 3.1), we start from using all SATs and add UATs one
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Table 1. Correlation between manually labeled class orderings and automatically
learned class orderings. In OSR, classes are coast (C), forest (F), highway (H), inside-
city (I), moutain (M), open-country (O), street (S) and tall-building (T). In PUBFIG,
classes are Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H), Jared Leto (J),
Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z).

OSR
Attr. Name Sem. Attr. Auto. Learned Attr. τ̂

natural T≺I∼S≺H≺C∼O∼M∼F S≺I≺H≺F≺O 0.89
open T∼F≺I∼S≺M≺H∼C∼O T≺F≺S≺O≺C≺H 0.86

perspective O≺C≺M∼F≺H≺I≺S≺T O≺F≺H≺I≺S 1
large-objects F≺O∼M≺I∼S≺H∼C≺T F≺M≺S≺H≺C≺T 0.97

diagonal-plane F≺O∼M≺C≺I∼S≺H≺T F≺O≺M≺I≺H≺S 0.79
close-depth C≺M≺O≺T∼I∼S∼H∼F M≺O≺F≺I≺S 0.84

PUBFIG
Attr. Name Sem. Attr. Auto. Learned Attr. τ̂

Masculine-looking S≺M≺Z≺V≺J≺A≺H≺C S≺M≺Z≺A≺H≺C 1
White A≺C≺H≺Z≺J≺S≺M≺V A≺Z≺H≺J≺S 0.80
Young V≺H≺C≺J≺A≺S≺Z≺M V≺H≺C≺J≺A≺M 1
Smiling J≺V≺H≺A∼C≺S∼Z≺M J≺H≺C≺A≺Z 0.95
Chubby V≺J≺H≺C≺Z≺M≺S≺A J≺H≺C≺Z≺A≺M 0.87

Visible-forehead J≺Z≺M≺S≺A∼C∼H∼V J≺Z≺M≺C≺A≺H 0.89
Bushy-eyebrows M≺S≺Z≺V≺H≺A≺C≺J S≺M≺Z≺A≺H≺C 0.73

Narrow-eyes M≺J≺S≺A≺H≺C≺V≺Z M≺A≺J≺H≺C 0.80
Pointy-nose A≺C≺J∼M∼V≺S≺Z≺H A≺M≺V≺J≺H 0.84

Big-lips H≺J≺V≺Z≺C≺M≺A≺S H≺J≺V≺M≺A 1
Round-face H≺V≺J≺C≺Z≺A≺S≺M V≺J≺Z≺A≺S 1

by one, according to their correlation to labeled semantic attributes: (a) most
correlated first (MCF); (b) least correlated first (LCF). Fig. 4 shows the results,
which validate our hypothesis.

4 Conclusion

We propose a formulation that can efficiently learn relative attributes and infer
the training class orderings with respect to each of the learned attributes. The
formulation also considers an attribute’s relevance to each training class. In
our experiments, the learned relative attributes are discriminative and provide
good generalizability and classification performance. Compared to supervised
learning of relative attributes [5], our algorithm does not need human labeling
of attributes and can also learn useful attributes that may be difficult to describe
with concise labels. Our method also finds attributes that are highly correlated
with all the semantic attributes identified by humans for the datasets tested. The
present formulation learns relative attributes at the class level. An interesting
direction for future work is learning relative attributes at the instance level.
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