
Ma SG, Wang WQ. Effectively discriminating fighting shots in action movies. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 26(1): 187–194 Jan. 2011. DOI 10.1007/s11390-011-1121-z

Effectively Discriminating Fighting Shots in Action Movies

Shu-Gao Ma1,2 (马述高) and Wei-Qiang Wang1,3,∗ (王伟强), Member, ACM, IEEE

1School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences
Beijing 100049, China

2Computer Science Department, Boston University, Boston MA 02215, U.S.A.
3Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences

Beijing 100190, China

E-mail: shugaoma@bu.edu; wqwang@ict.ac.cn

Received September 30, 2009; revised November 23, 2010.

Abstract Fighting shots are the highlights of action movies and an effective approach to discriminating fighting shots is
very useful for many applications, such as movie trailer construction, movie content filtering, and movie content retrieval.
In this paper, we present a novel method for this task. Our approach first extracts the reliable motion information of
local invariant features through a robust keypoint tracking computation; then foreground keypoints are distinguished from
background keypoints by a sophisticated voting process; further, the parameters of the camera motion model is computed
based on the motion information of background keypoints, and this model is then used as a reference to compute the actual
motion of foreground keypoints; finally, the corresponding feature vectors are extracted to characterizing the motions of
foreground keypoints, and a support vector machine (SVM) classifier is trained based on the extracted feature vectors to
discriminate fighting shots. Experimental results on representative action movies show our approach is very effective.

Keywords video analysis, motion, concept learning

1 Introduction

Among thousands of movies per year produced by
the movie industry, action movies are always a category
of the most popular ones. Generally fighting shots are
the highlights of action movies, and many interesting
applications can be created if fighting shots in them
can be identified. For example, fighting shots extracted
can be used to construct a movie trailer of an action
movie for advertisement or as a movie preview for quick
browsing. Another potential and important application
of discriminating fighting shots is movie content filter-
ing, to prevent violent fighting scenes from bringing
bad influence on children and adolescents. Moreover,
the technique of fighting shot identification can also be
applied in movie content indexing and retrieval.

To our knowledge, the research works on discri-
minating fighting shots are relatively few. Among the
related works, the concept of movie “tempo” has been
widely used to discover action scenes in movies by some
of the works, in which the tempo is characterized by the
rhythm of shot changes or the pace of motions within

a shot. For instance, Adams et al.[1] used the tempo to
detect dramatic story sections and events in a movie,
where the tempo was measured by the shot length and
the average magnitude of camera motion within a shot.
Based on [1], Liu et al.[2] further introduced the mo-
tion intensity and the motion complexity to measur-
ing tempo, and the motion intensity and the motion
complexity were defined as the average of magnitudes
of MPEG motion vectors and direction entropies in a
shot respectively. Then they detected action scenes in
movies by thresholding the tempo. Similarly, Chen et
al.[3] detected high-tempo shots to produce the movie
trailer and preview for action movies, where they mea-
sured the tempo through shot length, audio effects and
motion intensity. More works such as [4-6] also ex-
ploited the movie tempo to detect action scenes in
movies. All the approaches mentioned above do not
distinguish foreground motions from background mo-
tions in characterizing motions in a shot, though fore-
ground motion is generally a more important clue in
discriminating fighting shots. Many of them utilized
the rule-based way (using thresholds). Generally the

Short Paper
This work was supported in part by the National High Technology Research and Development 863 Program of China under Grant

No. 2006BAH02A24-2 and by the National Natural Science Foundation of China under Grant No. 60873087.
∗Corresponding Author
©2011 Springer Science +Business Media, LLC & Science Press, China

188 J. Comput. Sci. & Technol., Jan. 2011, Vol.26, No.1

construction of effective rules and the choice of suitable
thresholds are not an easy task for discriminating fight
shots, due to various complex actions in fighting, as well
as other various fast non-fighting motions, which are
difficult to model them by fixed templates. More com-
plex motion analysis techniques have been investigated
and applied in discriminating fighting scenes. Datta
et al.[7] detected human fighting in videos through ana-
lyzing the motion trajectory and orientation of person’s
limbs. Just as the authors themselves pointed out, their
approach will malfunction when more than two peo-
ple are fighting, since over-crowding foreground objects
and frequent occlusions make the tracking of human
bodies become quite difficult. Mecocci and Micheli[8]

grouped foreground areas into several regions of inter-
est (ROI) and then further divided each ROI into se-
veral color stains according to the color of foreground
areas. The relative movements of the color stains within
each ROI were estimated and an ROI was considered
as containing violent activities if this relative movement
exceeded a certain threshold during a specific time in-
terval. The approach in [8] is basically applicable for
analyzing surveillance videos where background keeps
static, and it also assumed that foreground objects all
lie on the same planar floor, which may not hold for
movies. Wang et al.[9] extracted structure tensor his-
tograms from video shots to train an Adaboost classifier
for shot classification, and one of their predefined shot
types was “fighting”. Although the structure tensor
histogram can reflect motion patterns in videos, fore-
ground motion and background motion are not sepa-
rated within this representation yet.

In this paper, we propose a novel approach to dis-
criminating fighting shots in action movies. To ro-
bustly extracting motion information when both ca-
meras and foreground objects move significantly, our
approach first uses a robust keypoint tracking tech-
nique to reliably estimate the motion of local invari-
ant features. Then, foreground keypoints are identi-
fied through a sophisticated voting process. Further,
the parameters of the camera motion model is com-
puted based on the motion information of background
keypoints, and this model is then used as a reference
to compute the actual movements of foreground key-
points. Finally, the velocity, moving direction, accel-
eration and angular velocity of foreground keypoints
are evaluated to form foreground motion feature vec-
tors and an SVM classifier is trained and used to dis-
criminate fighting shots. Compared with the previous
approaches, some features of our approach are summa-
rized as follows: 1) foreground motions are separated
from background motions, which makes our approach
can robustly deal with videos with significant cam-
era or foreground motions; 2) more complex features,

acceleration and angular velocity are introduced to bet-
ter characterize motion patterns of foreground objects,
and our experiments have shown the usefulness of such
information; 3) a machine learning way is exploited to
avoid the difficulty of constructing effective rules for
various movie contents.

The rest of this paper is organized as follows. Section
2 presents our approach in details. The experimental
results are reported in Section 3. Section 4 concludes
the paper.

2 Our Approach

We describe our approach in details in this section
and organize the related information as follows. First,
Subsection 2.1 introduces how to effectively and effi-
ciently matching keypoints in consecutive frame sam-
ples to extract the motion information of keypoints be-
tween them; then, we introduce the sophisticated vo-
ting process to identify camera motions by construct
the distribution of motion types, and the estimation of
the camera motion model in Subsection 2.2. Further,
Subsection 2.3 describes the related technique to ro-
bustly compute foreground motion feature vectors for
every consecutively sampled frame pair, as well as how
to characterize the motions of foreground objects. Fi-
nally, Subsection 2.4 briefly introduce the procedure of
training an SVM classifier based on foreground motion
feature vectors in a shot to discriminate fighting shots.

2.1 Tracking Keypoints

Our approach first extracts keypoints from sampled
frames and uses the SIFT descriptors to represent them
as [10], and then matches them between consecutive
frame samples to track their movements. In Section 2,
we use p to denote a keypoint on the current frame f ,
and use p∗, p′ to denote its correspondences on the pre-
vious frame f∗ and the next frame f ′ respectively, if its
correspondences have successfully been found on frame
f∗ or/and frame f ′ , as shown in Fig.1. λ denotes the
frame sampling interval.

Fig.1. Corresponding keypoints on consecutive frames.

To promote the matching accuracy and speed, we
assume 1) the spatial distance between a key-point p
and its correspondence p′ is always within a specified
range r, if p′ exists, and 2) the motions of keypoints

Shu-Gao Ma et al.: Effectively Discriminating Fighting Shots in Action Movies 189

(speed and direction) always change smoothly. So, for
a keypoint p, our algorithm searches a circular region
with radius r around p for its correspondence p′ on
frame f ′, as shown in Fig.2. Compared with [11] which
searches correspondences in the whole frame, our ap-
proach has two advantages. First, it promotes compu-
tation efficiency by avoiding searching unrelated areas.
Second, it can enhance matching accuracy by filtering
out similar but distant keypoints, which are common in
natural scenes (e.g., repeated textures) and often result
in false matches.

Fig.2. Searching correspondence in a circular region around key-

points.

Our system computes the matching score S(p, p′) be-
tween two keypoints p and p′ based on both the ap-
pearance similarity of SIFT features Sa(p, p′) and the
motion smoothness Sm(p∗, p, p′) by,

S(p, p′) = waSa(p, p′) + wmSm(p∗, p, p′), (1)

where wa and wm are the corresponding weights, and
wa = 0.7, wm = 0.3 in our system. The measure of
motion smoothness Sm(p∗, p, p′) is defined by

Sm(p∗, p, p′) = 1− θ(p∗p,pp′)
π

, (2)

where θ(p∗p,pp′) denotes the included angle between
motion directions p∗p and pp′. For example, as shown
in Fig.1, θ is the included angle between motion direc-
tions of keypoints p∗ and p. If the correspondence p∗ of
p on frame f∗ is not available, our system computes the
matching score S(p, p′) just based on the appearance
similarity of SIFT features, i.e., S(p, p′) = Sa(p, p′). Al-
though Sm(p∗, p, p′) only measures the change of mo-
tion direction and neglects the change of velocity, we
discover that it has worked well enough. As the cor-
respondence of p, only if keypoint p′ has the highest
matching score with p among all the keypoints in the
search circular region of p, and at the same time this
score exceeds a predefined threshold, the corresponding
motion vector pp′ is established.

If a keypoint moves fast, we need to check a rela-
tively large region to search for its correspondence on
the frame; if it is static or moves slowly, we only need
to check a small region to avoid unnecessary search.

Thus, for a keypoint p on the current frame, our al-
gorithm dynamically adjusts the search range r of its
correspondence p′ on the next frame based on the
velocity v∗ of its correspondence p∗ on the previous
frame. If v∗ is not available, since p has no correspon-
dence on the previous frame f∗, or the current frame is
an initial frame, a default value 0.2× l is chosen for r,
where l denotes the length of diagonal of a video frame.
Otherwise,

r = max(0.1× l, 1.5× v∗). (3)

Our system also adjusts the frame sampling inter-
val dynamically. When the motion is insignificant, a
larger λ is used to promote processing speed, otherwise
a smaller λ is used to guarantee matching accuracy.
Specifically, the adjustment is based on the average ve-
locity v̄ of keypoints on a frame, i.e.,

λ =





min
(⌈τ

3

⌉
,
⌈λ0Θ l

v̄

⌉)
, v̄ 6 Θl,

λ0, Θl < v̄ < Θh,

max
(
1,

⌈λ0Θh

v̄

⌉)
, v̄ > Θh,

(4)

where λ0 denotes the initial frame sampling interval
(λ0 = 3 in our system), τ denotes the frame rate
of video, and the two speed thresholds are chosen as
Θl = 0.02× l,Θh = 0.152× l in our system.

2.2 Analyzing Camera Motion

Once we have found the correspondences of key-
points on consecutive frames, we can further compute
and classify camera motions into different categories.
In our work, camera motions include four main cate-
gories, i.e., static, translation, rotation, and zoom, and
the category “translation” further includes eight sub-
categories based on different quantized translation di-
rections with boundaries (2k+1)π

8 , k = 0, 1, . . . , 7, as
shown in Fig.3. The camera motion category from the

Fig.3. Different quantized translation directions.

190 J. Comput. Sci. & Technol., Jan. 2011, Vol.26, No.1

current frame f to its next frame f ′ is determined by
the result of a voting process. Once the camera motion
category is identified, the keypoints which have consist
motion with cameras form a set ΩB of background key-
points, and otherwise a set ΩF of foreground keypoints.

For any keypoint p on the current frame f , a vot-
ing weight w(p) is associated with it, and the value
of w(p) depends on whether its correspondence p∗ on
previous frame f∗ exists, as well as whether p∗ is a
background keypoint or not. If p∗ does not exist or
frame f is an initial frame, we choose a default value
for w(p) (w(p) = 0.5 in our experiments). Otherwise,
we compute the weight w(p) by

w(p) =
{

w(p∗) + ∆, p∗ ∈ ΩB

max(0, w(p∗)−∆), p∗ ∈ ΩF

(5)

where ∆ = 0.5× ω, and ω is another parameter called
voting confidence, which indirectly reflects the confi-
dence of claiming p as a background keypoint, and the
related computation of ω is defined in the later descrip-
tion. Apparently, the evaluation in (5) can increase the
voting weights of background keypoints, and reduce the
voting weights of foreground ones, since background
motion is correlated more strongly with camera mo-
tions, and we expect that background keypoints should
play more significant role in estimating real camera mo-
tion.

To estimate more accurately the global motion of a
camera, we expect that the voting weights distribute
evenly on a frame. But sometimes many keypoints ag-
gregating in small regions may have large enough vo-
ting weights to dominate the voting result. To avoid
the case, we divide frame f into a set of M by N pixel
blocks. For the i-th pixel block, only the keypoint ps

in it which has the largest voting weight and its corre-
spondence p′s exists in frame f ′ is chosen as the repre-
sentative to participate the vote. As shown in Fig.4, a
collection of motion vectors is reduced into a few rep-
resentative motion vectors.

Fig.4. Generation of representative vectors.

Let ms, s = 1, 2, . . . ,MN , denote the motion vec-
tor associated with representative keypoint ps and its
correspondence p′s on frame f ′, i.e., ms = psp

′
s, O de-

note the center of frame f , θs denote the included angle
from Osps to ms (in Fig.5), and ht denote the number

of votes for the camera motion type t. The correspond-
ing voting algorithm for determining camera motion
categories is summarized in Algorithm 1. Algorithm
1 assumes that background regions cover most part of
a frame, so most representative vectors will vote for
the bin corresponding to the motion type of camera. If
the motion magnitude of a representative keypoint is
very small, i.e., |ms| < δ, the keypoint only votes for
the bin hstatic denoting static. Otherwise, the keypoint
always votes for one of the bins hj

tran, j = 0, 1, . . . , 7
denoting translation, and the specific bin depends on
the direction of ms. At the same time, the keypoint
is also permitted to vote for the bin hrotation denoting
rotation motion or the bin hzoom denoting zoom, if the
corresponding criterion is satisfied. At the end of the
algorithm, the bin indexed by t̂ which gains the most
votes is identified and it indicates the camera motion
type. Additionally, the confidence ω = ht̂/

∑
t ht used

in (5) is computed here, and that means that the more
representatives vote for it, the more possible the final
resolution is correct.

Fig.5. Definition of θs.

Algorithm 1. Classify Camera Motions by Voting

Input: ms, s = 1, 2, . . . ,MN ; δ, a threshold parame-

ter; ε, a bias tolerance parameter;

Output: camera motion type t̂; corresponding decision

confidence ω;

For (s = 1, 2, . . . ,MN)

{
if (|ms| < δ)

{
the weight w(ps) is voted to hstatic;

continue;

};

Compute the direction of ms, quantize it and then
the weight w(ps) is voted to hj

tran, where j denotes the
corresponding translation direction;

if (θs ∈ [π
2
− ε, π

2
− ε])

{
the weight w(ps) is voted to hrotation;

Shu-Gao Ma et al.: Effectively Discriminating Fighting Shots in Action Movies 191

continue;

};
if (θs ∈ [−ε, ε] or θs ∈ [π − ε, π + ε])

{
the weight w(ps) is voted to hzoom;

};
}

t̂ = arg max
t
{ht};

ω =
ht̂∑
t ht

;

In some special scenario where abrupt video con-
tent changes occur, such as flashing or occlusion, ω may
be too small to declare a valid voting result. Thus, if
ω < η, we do not give the judgement of camera motion
categories from frame f to frame f ′, and just take f ′

as an initial frame in the next round of computation.
In our system, M = N = 16, δ = 2, ε = 0.6, and
η = 0.25. Once the camera motion type from frame f
to frame f ′ is determined, each existing motion vector
from frame f to frame f ′ is classified as background if
it is in accord with the camera motion type, or fore-
ground otherwise. Further, we can use (5) to compute
the weights of endpoint of each motion vector on frame
f ′. Finally, frame f ′ becomes a current frame, and the
system starts to analyze camera motion from frame f ′

to its next sampled frame.
For the tradeoff between simplicity and accuracy, we

approximate the camera motion from frame f to frame
f ′ as an affine transform of coordinates of keypoints,
and represent it as

(
x′

y′

)
=

(
a b
−b a

)(
x
y

)
+

(
c
d

)
(6)

where (x, y) and (x′, y′) denote the original and new co-
ordinate respectively. The four model parameters a, b,
c and d can be estimated using Least Square Minimiza-
tion by the motion vectors of background keypoints.

2.3 Extracting Foreground Motion Feature

In our application, fighting as a kind of motion of
foreground objects is always associated with the mo-
tion of foreground keypoints. So it is an significant part
to robustly identify foreground keypoints and define an
effective feature to characterize motions of foreground
keypoints.

Through the camera motion analysis process in Sub-
section 2.2, keypoints p on frame f are classified into
two categories, i.e., background and foreground, and
it is the same for the corresponding motion vectors, if
their correspondences p′ are found on frame f ′. In the
above computation, two wrong cases may occur: (a)

the wrong correspondence is found on frame f ′ for p,
which results in a wrong estimation of motion vectors;
(b) some foreground keypoints are wrongly classified as
background due to they have similar motion direction
as cameras. To robustly identify foreground keypoints
and more accurately estimate the foreground motion
vectors, the corresponding computation is performed
to deal with the problems. First, for each background
motion vector pp′, the bias is computed through com-
paring p′ against the estimated location from the ca-
mera motion model defined by (6). If this bias is larger
than a threshold, the keypoint p is revised as a fore-
ground keypoint. Additionally, let p̃′ denote the key-
point which has the second highest matching score with
p on frame f ′, and p has the highest matching score.
The motion vector pp′ will not be used in extracting
foreground motion features, if the following condition
is not satisfied, i.e.,

S(p, p′)
S(p, p̃′)

> ζ (7)

where ζ is a threshold. Lowe[10] has shown that (8) can
effectively filter out wrongly matched keypoint pairs.

After the above processing, we assume that an accu-
rate correspondence p′ has been found on frame f ′ for a
foreground keypoint p. In fact, the motion pp′ of fore-
ground keypoints consists of two parts, camera motion
and their actual motion relative to camera. Only actual
motion vectors of foreground keypoints contain useful
information in representing the motion of foreground
objects. Thus, we first compute the location of point
p due to camera motion using (5), and let ṗ′ denote it.
Then the actual motion of a foreground keypoint p is
represented by vector m̃(p), and m̃(p) is computed by

m̃(p) = pp′ − pṗ′. (8)

Based on the set of actual motion vectors of foreground
keypoints p on frame f , i.e., {m̃(p)}, as well as the
set of actual motion vectors of foreground keypoints
p∗ on frame f∗, i.e., {m̃(p∗)}, we can extract fore-
ground motion feature, including velocity, motion di-
rection, angular velocity and acceleration, etc. The
foreground motion feature vector of current frame f
consists of velocity-direction histogram, angular veloc-
ity histogram, acceleration histogram, static-to-motion
ratio, motion-to-static ratio, continuity ratio. Let nf

denote the number of foreground keypoints on frame f
whose correspondence can be found on frame f ′, and
nb denote the number of foreground keypoints on frame
f whose correspondence can be found on both frame f ′

and frame f∗. The concrete definitions of different fea-
ture components are described as follows.

192 J. Comput. Sci. & Technol., Jan. 2011, Vol.26, No.1

• Velocity-Direction Histogram. It is a two-
dimensional histogram, and the velocity of foreground
keypoint p is computed by m̃(p)/λ, where the time in-
terval λ use 1

8 second as the unit time. The velocity is
quantized into 8 bins. The first 7 bins have the same
bin width l

35 and the 8th bin corresponds the velocity
larger than l

5 (definition of l see (3)). The motion di-
rection range [−π

8 , 15π
8) is evenly quantized into 8 bins,

as shown in Fig.3. The velocity-direction histogram is
finally normalized by nf .
• Angular Velocity Histogram. Only when keypoint

p has the correspondence p∗ on frame f∗, it is used
to compute the angular velocity histogram. It is also
true for the remaining features. Since the change of
motion directions depends on the included angle θ be-
tween m̃(p) and m̃(p∗), and θ = arccos(m̃(p)m̃(p∗)

|m̃(p)||m̃(p∗)|).
The angular velocity is computed by θ/λ. The angu-
lar velocity is quantized into 9 bins, where the first bin
corresponds to linear motion (θ ≈ 0) and the bin width
of the remaining 8 bins is π

8). The angular velocity
histogram is finally normalized by nb.
• Acceleration Histogram. The acceleration of key-

point p is computed by (|m̃(p)| − |m̃(p∗)|)/λ. The
acceleration is quantized into 17 bins. Constant mo-
tion is mapped to the first bin, positive accelerations
are mapped to the 2nd∼9th bins, and negative accel-
erations are mapped to the 10th∼17th bins. The bin
width of 2nd∼8th bins and 10th∼16th bins is l/35. The
acceleration larger than l/5 is mapped to the 9th bin,
if it is positive, or the 17th bin, if negative. The ac-
celeration velocity histogram is finally normalized by
nb.
• Static-to-Motion Ratio, and Motion-to-Static Ra-

tio. Through a small threshold µ, we can define two
kinds of keypoints. Concretely, if |m̃(p)| > µ and
|m̃(p∗)| 6 µ, keypoint p is called a static-to-motion key-
point. On the contrary, if |m̃(p)| 6 µ and |m̃(p∗)| > µ,
keypoint p is called a motion-to-static keypoint. The
static-to-motion ratio is defined as the ratio of the num-
ber of static-to-motion keypoints to nb, and the motion-
to-static ratio is defined as the ratio of the number of
motion-to-static keypoints to nb. In our system, we
choose µ = 2.
• Continuity Ratio. The continuity ratio is defined

as nb/nf .

2.4 Discriminating Fighting Shots

For each video shot, the foreground motion feature
vector between every consecutively sampled frame pair
can be extracted, and they form a set of feature vec-
tors Φ. For different shots, the size of feature set Φ
may vary, so we compute the mean vector φ̄ of all the
feature vectors {φ|φ ∈ Φ} as the foreground motion

feature vector of the shot, i.e.,

φ̄ =
1
K

K∑

i=1

φi, φi ∈ Φ. (9)

We label a collection of video shots as containing fight-
ing event or not, and their foreground motion feature
vectors are extracted to form the training set. We
use the SVM to construct the classifier for discriminate
fighting shots.

3 Evaluation Experiments

Our fighting shot discrimination approach is based
on video motion analysis, so we first report the evalu-
ation results on the effectiveness of our camera motion
analysis method, and then give the evaluation results
of fighting shot discrimination.

3.1 Camera Motion Analysis Evaluation

We perform two groups of evaluation experiments
to verify the effectiveness of our camera motion analy-
sis approach. To evaluate its effectiveness on ordinary
videos, the first experiment is carried out on the public
dataset provided by TRECVID 2005 for the low level
feature (camera motion) extraction task. This dataset
mostly consists of news videos and contains 2226 video
shots manually labeled as containing different camera
motion types including pan, tilt and zoom. We choose
the same evaluation measures: precision and recall, as
TRECVID 2005 does, with the following definitions:

precision =
tp

fp + tp
, recall =

tp
fn + tp

, (10)

where tp is the number of shots with camera motion
types correctly declared, fp is the number of shots
wrongly declared and fn is the number of shots mis-
taken for other types. The experimental results on the
dataset are summarized in Table 1. It shows that our
results are comparable to the best results reported in
TRECVID[12] and the recalls of pan and tilt generated
by our algorithm are higher than the best reported re-
sults (88% and 78% respectively in [12]). So our ap-
proach can work effectively on ordinary videos.

Table 1. Experimental Results on TRECVID 2005 Dataset

Motion Type Precision (%) Recall (%)

Pan 91.3 90.4

Tilt 88.2 83.2

Zoom 97.2 65.5

The other group of experiment is carried out on
a dataset consisting of 500 video shots chosen from

Shu-Gao Ma et al.: Effectively Discriminating Fighting Shots in Action Movies 193

seven action movies including “Kill Bill”, “The Termi-
nator”, “The Rock”, etc. The camera motion types
are manually labeled by us as static, pan, tilt, or
zoom. Most of them contain significant camera mo-
tions and/or foreground motions and some contain ir-
regular light changes such as light flashing. The expe-
rimental results are summarized in Table 2 which show
the effectiveness of our approach on videos with signi-
ficant motion. Some of the results are even better than
those on the TRECVID dataset. A possible explana-
tion is that our approach is more sensitive to significant
camera motion, since we observe that many shots with
subtle camera motion in the TRECVID dataset are de-
clared as static by our approach, and that is why a
difference in recall can be seen between Table 1 and
Table 2. The sensitivity benefits from the adaptive ad-
justment of sampling interval λ by (4) which can make
the subtle motion become more apparent and make sig-
nificant motion become appropriate.

Table 2. Experimental Results on Action Movie Video Shots

Motion Type Precision (%) Recall (%)

Pan 93.6 98.5

Tilt 92.9 97.3

Zoom 92.3 87.8

Static 97.8 88.1

3.2 Fighting Shot Discrimination Evaluation

The evaluation dataset for fighting shot discri-
mination contains 523 video shots from four action
movies which are manually labeled as containing figh-
ting events or not. Table 3 details the number of shots
in each category in the dataset.

Table 3. Evaluation Dataset

Motion Name Fighting Non-Fighting Total

Flash Point 33 49 82

Dead and Alive 69 71 140

Fists of Fury 60 85 145

Kill Bill 76 80 156

Total 238 285 523

For every movie, we train an SVM classifier using
the shots from the other three movies and then clas-
sify the shots of this movie. We use the LIBSVM[13]

as the SVM training tool. The RBF kernel is chosen
for the SVM classifier and the best parameters are es-
timated using cross validation. The result is evaluated
by precision and recall for the classification of fight-
ing shots, which is defined the same as in the previous
subsection. For this evaluation, tp is the number of
correctly classified fighting shots, fp is the number of

shots wrongly classified as fighting shots and fn is the
number of fighting shots that are not detected. We per-
form two groups of experiments: the first one uses only
the velocity-direction histogram as the feature vector
and the other uses all components of the feature vector
described in Subsection 2.3. Table 4 shows the results
from the first group of experiments and Table 5 shows
the results from the second group of experiments.

Table 4 and Table 5 show that our method can effec-
tively discriminate fighting shots in a movie. Through
comparing Table 4 with Table 5, we can see that be-
sides the velocity and direction, the angular velocity,
the acceleration and the other extracted information
are useful in helping promote the classification perfor-
mance.

Table 4. Experimental Results Using Only

Velocity-Direction Histogram

Motion Name Precision (%) Recall (%)

Flash Point 64.10 75.76

Dead and Alive 78.26 78.26

Fists of Fury 69.56 57.14

Kill Bill 71.43 75.00

Average 71.85 71.85

Table 5. Experimental Results Using All the Features

Motion Name Precision (%) Recall (%)

Flash Point 67.4410 87.88

Dead and Alive 78.82 97.10

Fists of Fury 70.00 70.00

Kill Bill 86.76 77.63

Average 76.95 82.77

4 Conclusion

An effective fighting shot discrimination approach
is proposed in this paper. Our approach consists of
two parts, robust camera motion analysis computation,
and classification model based on motion of foreground
objects. Our camera analysis computation can effec-
tively deal with ordinary videos, and is especially good
at analyzing the fast, significant camera motion in ac-
tion movies, due to the trick of adaptive frame sampling
in our approach. Through robustly identify foreground
keypoints and characterizing motion of foreground ob-
jects by the velocity, moving direction, acceleration and
angular velocity of foreground etc., we can effectively
discriminating discriminate fighting shots. Since the
audio signal can also provide useful information in dis-
criminating fighting scenes, integrating audio cues in
this task is one of our future work. Additionally, more
efforts are required in exploring the proposed camera

194 J. Comput. Sci. & Technol., Jan. 2011, Vol.26, No.1

motion analysis algorithm to be applied in other com-
puter vision tasks.

References

[1] Adams B, Dorai C, Venkatesh S. Novel approach to determi-
ning tempo and dramatic story sections in motion pictures. In
Proc. the 7th IEEE International Conference on Image Pro-
cessing, Vancouver, Canada, Sept. 10-13, 2000, pp.283-286.

[2] Liu A, Li J, Zhang Y, Tang S, Song Y, Yang Z. An innovative
model of tempo and its application in action scene detection
for movie analysis. In Proc. the 9th IEEE Workshop on
Applications of Computer Vision, Copper Mountain, USA,
Jan. 7-9, 2008, pp.1-6.

[3] Chen H W, Kuo J H, Chu W T, Wu J L. Action movies
segmentation and summarization based on tempo analysis.
In Proc. the 6th ACM SIGMM International Workshop on
Multimedia Information Retrieval, USA, Oct. 15-16, 2004,
pp.251-258.

[4] Chen L, Ozsu M T. Rule-based scene extraction from video.
In Proc. the 9th IEEE International Conference on Image
Processing, Rochester, USA, Sept. 22-25, 2002, pp.737-740.

[5] Cheng W, Liu C, Xu D. An approach to action scene detec-
tion in martial arts movies. Acta Electronica Sinica, 2006,
34(5): 915-920.

[6] Gong Y, Wang W Q, Jiang S Q, Huang Q M, Gao W. De-
tecting violent scenes in movies by auditory and visual cues.
In Proc. the Pacific-Rim Conference on Multimedia, Tainan,
China, Dec. 9-13, 2008, pp.317-326.

[7] Datta A, Shah M, Lobo N D V. Person-on-person violence
detection in video data. In Proc. the 16th International Con-
ference on Pattern Recognition, Quebec, Canada, Aug. 11-15,
2002, pp.433-438.

[8] Mecocci A, Micheli F. Real-time automatic detection of
violent-acts by low-level colour visual cues. In Proc. the
14th IEEE International Conference on Image Processing,
San Antonio, USA, Sept. 16-19, 2007, pp.345-348.

[9] Wang S, Jiang S, Huang Q, Gao W. Shot classification for
action movies based on motion characteristics. In Proc. the
15th IEEE International Conference on Image Processing,

San Diego, USA, Oct. 12-15, 2008, pp.2508-2511.

[10] Lowe D G. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 2004,
60(2): 91-110.

[11] Battiato S, Gallo G, Puglisi G, Scellato S. SIFT features
tracking for video stabilization. In Proc. the 14th Interna-
tional Conference on Image Analysis and Processing, Mod-
ena, Italy, Sept. 10-14, 2007, pp.825-830.

[12] Kraaij W, Ianeva T. TRECVID-2005 low-level (camera
motion) feature task. http://www.nlpir.nist.gov/projects/
tvpubs/tv5.papers/tv5.llf.slides.final.pdf, 2005.

[13] Fan R, Chen P, Lin C. Working set selection using the sec-
ond order information for training SVM. Journal of Machine
Learning Research, 2005, 6(12): 1889-1918.

Shu-Gao Ma received his M.S.
degree in computer science from
Graduate University of Chinese
Academy of Sciences in 2009. He
is currently a Ph.D. candidate in
Boston University, US. His current
research interests include multimedia
content analysis, computer vision.

Wei-Qiang Wang is a profes-
sor in School of Information Science
and Engineering, Graduate Univer-
sity of Chinese Academy of Sciences,
Beijing, China. He is a member of
IEEE, ACM. He received his Ph.D.
degree from Institute of Computing
Technology, Chinese Academy of Sci-
ences, in 2001. His current research
interests include multimedia content

analysis, computer vision and machine learning.

